
Getting Started
With Your

DOMAIN/IX System

Order No. 008017
Revision 00

Software Release 9.2

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Copyright © 1986 Apollo Computer Inc.
All rights reserved.	 Printed in U.S.A.

First Printing:	 February, 1986

This document was produced using the Interleaf Workstation Publishing
Software (WPS). Interleaf and WPS are trademarks of Interleaf, Inc.

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/Bridge, DOMAIN/Dialogue, DOMAIN/IX,
DOMAIN/Laser–26, DOMAIN/PCI, DOMAIN/SNA, DOMAIN/VACCESS, D3M,
DPSS, DSEE, GMR, and GPR are trademarks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and
other information contained in this publication without prior notice, and the
reader should in all cases consult Apollo Computer Inc. to determine whether
any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO
COMPUTER INC. HARDWARE PRODUCTS AND THE LICENSING OF
APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE SET
FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC.
AND ITS CUSTOMERS. NO REPRESENTATION OR OTHER AFFIRMATION
OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING BUT NOT
LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE–TIME
PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS
DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY APOLLO
COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY
APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY
INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES
WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATING TO THIS PUBLICATION OR THE
INFORMATION CONTAINED IN IT, EVEN IF APOLLO COMPUTER INC. HAS
BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF
SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE
CONFIDENTIAL INFORMATION AND PROPRIETARY PRODUCTS OF APOLLO
COMPUTER INC. OR ITS LICENSORS.

	 iii	 Preface

Preface

Getting Started With Your DOMAIN/IX System introduces you to the
basic concepts you’ll need to use our implementation of the UNIX™
operating system. It teaches you how to use the keyboard, manage
the information displayed on your screen, and manipulate text.
You’ll also learn how to request system services using interactive
commands.

Whether you are new to the DOMAIN® system or not, you can soon
get started performing important UNIX functions with ease. In fact,
we’ve written the material so that anyone who understands UNIX
“basics” can apply that knowledge to our flexible operating
environment in a very short time. You’ll benefit from the improved
user interface and excellent time–saving UNIX system extensions
that we supply with the DOMAIN/IX™ product.

Because this book is targeted for first–time users of DOMAIN/IX
software, we carefully define terms and try to avoid computer
industry jargon. We have also included examples you can try at your
computer while you read. In this way, you can learn by doing. Once
you finish reading the book and trying all the examples, you will have
an easy–to–read overview of the DOMAIN/IX system.

The Organization of this Manual
We’ve organized the information in this manual as follows:

Chapter 1 Describes your keyboard and display, and
explains how DOMAIN/IX programs are
made available on your node.

Chapter 2 Explains log–in procedures, and helps you
understand your display’s appearance once
you have logged on to the system.

Preface	 iv

Chapter 3 Explains the rules for entering commands
that perform basic DOMAIN/IX functions.

Chapter 4 Provides a detailed description of how you
can manage and control the elements of
your display.

Chapter 5 Tells how the DOMAIN/IX system organizes
information.

Chapter 6 Teaches you how to create, edit, and read
text. Also explains how to print, copy, and
delete information as necessary.

Chapter 7 Gives a brief overview of UNIX Shells. Also
describes pipes and filters, redirection of
input and output, and Shell scripts.

Chapter 8 Describes what you need to know in order to
make the transition between the two
versions of our UNIX implementation.

Keyboard Control
Summary

Provides a short graphic overview of key-
board usage.

DM Environment
Variable Settings

Describes important variables that affect
the way that your display handles data.

Error Message
Summary

Explains some common messages that typi-
cally appear as the result of a user error.

Command Synopsis Summarizes commands and keys described
in this manual.

Glossary Defines terms used in this manual.

Documentation Conventions
Unless otherwise noted in the text, this manual uses the following
symbolic conventions.

example	 Color words in command examples
represent literal user keyboard input.

	 v	 Preface

command	 Bold, lowercase words represent commands
or keywords that you must use literally.

glossary term 	 Italicized terms are defined in the Glossary.

“filename”	 Double quotation marks enclose the name
of an object or term used in an example.

<RETURN>	 Angle brackets enclose the name of a key
on the keyboard.

CTRL/D 	 The notation CTRL/ followed by the name
of a key indicates a control character
sequence. Hold down <CTRL> while typing
the character.

Related Manuals
When you complete this manual, continue with the DOMAIN/IX
User’s Guide (005803). It provides advanced information about
performing various tasks using system components. In particular, it
contains extensive material on UNIX Shells, software development
tools, and the communications utilities. If you need to know more
about DOMAIN/IX text processing and editing capabilities, consult
the DOMAIN/IX Text Processing Guide (005802).

The DOMAIN System User’s Guide (005488) describes the special
functions of the Display Manager and other enhanced capabilities
offered by the DOMAIN system.

The DOMAIN/IX Command Reference for BSD4.2 (005800) and
the DOMAIN/IX Command Reference for System V (005798)
describe all user–oriented Shell commands supported, respectively,
by the BSD4.2 and System V versions of the UNIX operating system.
The commands are arranged alphabetically for quick and easy
access.

The DOMAIN/IX Programmer’s Reference for BSD4.2 (005801)
and the DOMAIN/IX Programmer’s Reference for System V
(005799) describe the system calls and library functions supported,
respectively, by the BSD4.2 and System V versions of the UNIX
operating system. The system calls are also arranged alphabetically.

Preface	 vi

Problems, Questions, and Suggestions
We appreciate comments from the people who use our system. In
order to make it easy for you to communicate with us, we provide the
User Change Request (UCR) system for software–related comments,
and the Reader’s Response form for documentation comments. By
using these formal channels you make it easy for us to respond to
your comments.

You can get more information about how to submit a UCR by
consulting the DOMAIN System Command Reference (002547). You
can view the same description on–line by typing the following at a
UNIX Shell prompt:

% /com/help crucr <RETURN>

For your documentation comments, we’ve included a Reader’s
Response form at the back of each manual.

Using the Stand–Up Binder
The plastic page lifter is designed to function as an easel for propping
up the binder on your desktop. The following illustration shows how
to use it.

	 vii	 Preface

Contents

Chapter 1	 Introduction

Getting to Know Your DOMAIN Node 1–3
Your Keyboard . 1–3
Your Display . 1–5
Moving the Cursor . 1–6

Using the Keyboard . 1–6
Using the Touchpad . 1–7
Using the Mouse . 1–8

How Does It All Work? . 1–10
The Shell Program .1–10
The Display Manager . 1–11

Summary . 1–11

Chapter 2	 Logging In

Entering Your User ID and Password 2–2
Understanding Your Display After Log–In 2–3
Ending the Session – Logging Off . 2–6
Summary . 2–7

Chapter 3	 Entering Commands

Invoking the Display Manager . 3–2
DM Function Keys . 3–2
Control Key Sequences . 3–4
Creating a Process . 3–4
Redefining Keys for UNIX Functionality 3–4

Using UNIX Commands . 3–7
Using AEGIS Commands . 3–7
Correcting Typing Errors . 3–8
Getting Help . 3–9
Summary . 3–10

Preface	 viii

Chapter 4	 Managing Windows and Pads

Looking Inside a Window . 4–2
Moving a Pad Under a Window . 4–6

Moving to the Top and Bottom of a Pad 4–6
Moving (Scrolling) a Pad Vertically 4–7
Moving (Scrolling) a Pad Horizontally 4–7

Managing Windows . 4–7
Pushing or Popping a Window . 4–8
Responding to Alarms . 4–9
Copying Text to the Process Input Window 4–10
Changing Window Size . 4–11
Moving a Window . 4–13

Stopping a Process . 4–13
Suspending a Process . 4–15
Summary . 4–15

Chapter 5	 Organizing Information

Using Pathnames . 5–3
Where Am I? . 5–4

The Network Root Directory . 5–5
Your Node Entry Directory . 5–5
Your Home Directory . 5–6
Your Working Directory . 5–7
Parent Directories . 5–8

Pathname Symbols – A Review . 5–9
Using Links . 5–10
File Permissions . 5–12
Summary . 5–13

Chapter 6	 Using Files

File Naming . 6–1
Using the DM to Create a File . 6–2
Using the DM to Read a File . 6–3
Using the DM to Edit a File . 6–4

	 ix	 Preface

Making Corrections to Text . 6–6
Defining a Range of Text . 6–7
Cutting and Pasting (Moving) Text 6–7
Copying and Pasting Text . 6–9
Searching for Text . 6–9
Canceling a Copy, Cut, or Search 6–10
Substituting Text . 6–10
Undoing Previous Commands . 6–11

Using the UNIX Display–Oriented Editor (vi) 6–12
Using the UNIX Line Editor (ed) . 6–12
Copying a File . 6–12
Printing a File . 6–13

Using a Print Command . 6–13
Using a Print Menu . 6–13

Deleting a File . 6–15
Summary . 6–16

Chapter 7	 Using a UNIX Shell

Command Format . 7–2
Using Command Arguments . 7–2
Using Command Options . 7–2
Entering Multiple Commands on a Line 7–3

Command Line Processing . 7–3
Command Search Paths . 7–4
Using Wildcards . 7–5
Redirecting Input and Output . 7–6

Writing Output to a File . 7–7
Reading Input from a File . 7–7

Using Pipes and Filters . 7–8
Creating Shell Scripts . 7–10
Summary . 7–12

Chapter 8	 Using Both DOMAIN/IX Versions

Name Space Support . 8–2
Environment Switching . 8–4
Summary . 8–5

Preface	 x

Appendix A:	 Keyboard Control Summary A–1

Appendix B:	 DM Environment Variable Settings B–1

Appendix C:	 Command Synopsis C–1

Appendix D:	 Error Message Summary D–1

Glossary . Glossary–1

Index . Index–1

	 xi	 Preface

Illustrations

Figure	 Page

1–1	 DOMAIN System Nodes . 1–2
1–2	 A Low–Profile Keyboard . 1–4
1–3	 A Landscape Display . 1–5
1–4	 Keys that Move the Cursor 1–7
1–5	 A Touchpad . 1–8
1–6	 A Mouse . 1–9
2–1	 Window Positions on a Landscape Display 2–4
3–1	 Function Keys that Access Two Commands 3–3
4–1	 A Window Over a Pad . 4–2
4–2	 Input and Transcript Pads . 4–3
4–3	 A Read–Only Window and Pad 4–5
4–4	 Pushing and Popping Windows 4–9
4–5	 Changing a Window’s Size 4–12
5–1	 A Sample Naming Tree . 5–2
5–2	 Sample Pathname . 5–4
5–3	 A New Directory in the Naming Tree 5–8
5–4	 Pathnames Starting with //, /, and ../ 5–10
6–1	 A Sample Editing Session Using the DM 6–6
6–2	 The Print Menu . 6–14

Preface	 xii

Tables

Table	 Page

3–1	 UNIX Key Definitions . 3–5
4–1	 Keys that Move a Pad . 4–6
4–2	 Predefined Window Control Keys 4–8
5–1	 Pathname Starting–Point Symbols 5–9
8–1	 DOMAIN/IX System Directories 8–3

	 1–1	 Introduction

Chapter	 1

Introduction

The DOMAIN/IX product is an implementation of the UNIX
operating system that runs on DOMAIN computers (or nodes) linked
together with a local area network. Figure 1–1 shows the wide
variety of DOMAIN nodes that may be connected in this network.

Each node can use the data and programs of other network nodes.
Each contains main memory, and may have its own disk, or share
one with another node (i.e., be considered a diskless node).

Introduction	 1–2

Figure 1–1. DOMAIN System Nodes

DOMAIN/IX software supports the DOMAIN distributed file system,
ring network, and bit–mapped, high–resolution displays. In addition
to bringing the benefits of a networked architecture to the UNIX
system, DOMAIN/IX software offers many features that are seldom

	 1–3	 Introduction

found on either time–sharing or workstation implementations of this
software.

We provide two versions of the DOMAIN/IX system to our
customers. The sys5 version supports UNIX System V, Release 2
from AT&T Bell Laboratories. The bsd4.2 version supports 4.2 BSD
from the University of California at Berkeley.

This chapter introduces the DOMAIN/IX product and explains the
basic components of your DOMAIN node. The best way to master
the material in this book is to try each example at your node while
you read. In the back of this book, there is a glossary that defines
terms specific to the DOMAIN/IX system. The glossary also lists
terms used throughout our documentation.

Getting to Know Your DOMAIN Node
The node you’re using includes a keyboard and a color or
black–and–white display screen. Display management software lets
you create up to 16 different windows on the screen. Each window is
a separate computing environment in which you can execute
programs, edit text, or read text. You can move the windows
anywhere on your screen, change their size and shape, and overlap
or shuffle them as you might papers on your desk.

Your Keyboard
Most likely, your node is equipped with a low–profile keyboard. If
your keyboard is not like the one shown in Figure 1–2, you could
have an older model, the 880 keyboard. Because the information we
present in our exercises assumes that you have a low–profile
keyboard, you must refer to Appendix A for equivalent 880
keyboard definitions and control sequences.

Introduction	 1–4

Figure 1–2. A Low–Profile Keyboard

	 1–5	 Introduction

Your Display
The display you’re using probably resembles the landscape
(horizontal) display in Figure 1–3. You may, however, have one of
our older portrait (vertical) displays. If your screen looks blank,
press any key to turn on the video display. The system automatically
shuts off the video display if it is idle for more than 15 minutes.

If your screen still looks blank after you press a key, your node is not
running. If you need help with starting your node, see your system
administrator (the person responsible for system maintenance and
security at your installation), or refer to the Operator’s Manual for
your particular node.

Figure 1–3. A Landscape Display

Introduction	 1–6

Notice the small, blinking box in the lower left corner of your
display. This is the cursor. The box cursor indicates where the
system will display the information that you type at your keyboard.

As you use the system, you may see two other cursor shapes: an
arrow cursor (↑) and a cross in a circle cursor (⊕). The arrow
cursor appears when you use the touchpad or mouse to move the
cursor (see “Using the Touchpad” and “Using the Mouse” later in
this chapter). The circle cursor appears when the Display Manager is
so busy that it cannot immediately respond to your commands. As a
new user, you should simply wait until the circle cursor changes back
to a blinking box or an arrow before you enter additional commands.

Moving the Cursor
Moving the cursor is the first step in learning to use the system. As
you work through the examples in this book, you’ll see that you must
position the cursor at a specific location on your display before giving
an instruction to the system.

To move the cursor, use the arrow keys, or a mouse. The touchpad
and the mouse are optional pieces of equipment. The arrow keys are
available on all keyboards.

As you read about the ways to move the cursor in the next three
sections, try using the keys, and the touchpad or mouse if you have
one.

Using the Keyboard

You can use any of the keys highlighted in Figure 1–4 to move the
cursor. To move the cursor using the arrow keys (← → ↑ ↓),
press the arrow key that points in the direction you wish to move,
and hold it down until the cursor reaches the desired destination.

To move to the beginning or end of a line displayed beneath the
cursor, use the keys labeled ⇤ and ⇥ .

	 1–7	 Introduction

Figure 1–4. Keys that Move the Cursor

Using the Touchpad

The optional touchpad is located on the right side of your keyboard.
(See Figure 1–5.) The touchpad is made of a pressure–sensitive
material. When you press the material with your finger, the touchpad
transmits data to the system, and the system moves the cursor.

While you’re touching the material, the cursor appears as an arrow;
when you lift your finger, the cursor reverts to a blinking box.

Take care not to puncture or scratch the touchpad’s conductive
material. Never use a sharp object (such as a pencil or pen point) on
the touchpad. Scratches or punctures can move the cursor into
undesired screen positions.

Introduction	 1–8

Figure 1–5. A Touchpad

Using the Mouse

The mouse is a small device that you move across a flat surface, such
as your desktop or a pad of paper. (See Figure 1–6.) A ball in the
base of the mouse detects motion, the mouse transmits data about
the motion to the system, and the system moves the cursor.

	 1–9	 Introduction

Figure 1–6. A Mouse

When you’re moving the mouse, the cursor appears as an arrow;
when you stop moving the mouse, the cursor reverts to a blinking
box.

There are three keys on the mouse. You can use these keys to
manipulate windows and read files. Chapter 4 explains how to
expand, shrink, and shuffle windows with the mouse. Chapter 6
describes how you can use the mouse to examine the contents of
files.

NOTE:	 The mouse keys are predefined to perform particular
functions. You can, however, redefine the mouse keys to do
other useful tasks. See the DOMAIN System User’s Guide
for details.

Introduction	 1–10

How Does It All Work?
DOMAIN/IX software combines the portability of the UNIX
operating system with the flexible nature of the DOMAIN system’s
AEGIS operating system. Thus, these two entities co–reside in a
partnership to supervise program execution on your node. As a
result, the UNIX programs supplied as a part of the DOMAIN/IX
system have the same file format as AEGIS programs. Furthermore,
there is normally no distinction between processes that run UNIX
programs on a DOMAIN node and those that run AEGIS programs.

As we describe DOMAIN/IX system operations, it is important for
you to understand the two major components that are responsible for
providing and monitoring program execution: the Shell and the
Display Manager (DM).

The Shell Program
The Shell program provides access to traditional computing
operations, such as printing documents, compiling and running
programs, and monitoring system activities. The Shell “listens” for
commands that you type at your keyboard. Shell commands invoke
utilities, which are programs that perform the tasks you request.

As you read the material we present, you won’t really need to know
how the AEGIS Shell works. However, you should note that, by
default, the system opens an AEGIS Shell when you first log in. You
may, of course, arrange for a UNIX Shell to be opened instead. Or,
you may decide to have both an AEGIS Shell and a UNIX Shell
opened at log–in time. We will tell you more about this later, as well
as how to issue commands from both types of Shells.

For now, remember that you can recognize the AEGIS Shell by the
single dollar sign ($) it uses as its prompt. Programs use prompts to
indicate that they are ready for you to type a command at the
keyboard. The default prompt for all C Shells is a percent sign (%).
The default prompt for a System V Bourne Shell is a pound sign (#);
a BSD4.2 Bourne Shell uses a capital “B” followed by a dollar sign
(B$).

Throughout this book, we use a C Shell for all our DOMAIN/IX
system examples. Furthermore, we use the BSD4.2 version of the

	 1–11	 Introduction

DOMAIN/IX software. Our examples, however, do not depend on
version or UNIX Shell type. Thus, whether you use the BSD4.2 or
the System V version, whether you work in a C Shell or a Bourne
Shell, you can still apply the necessary information and work through
the examples.

The Display Manager
The Display Manager is a program that opens, closes, and moves
windows on your screen. Furthermore, it can be used for changing
other aspects of the display, such as background color and character
font, and for creating and editing files, which we will explain more
about later. The Display Manager also supervises the creation of
computing environments (processes) in which you can execute
programs. After you log in, the Display Manager creates a process in
which a Shell program is running.

Summary
After reading this chapter, you should be familiar with your keyboard
(and mouse or touchpad) and the basic information that your display
provides. You should also know the fundamental purposes of Shell
programs and the Display Manager. In the next chapter, you’ll learn
how to log in on your node so that you can begin using the
DOMAIN/IX system.

	 2–1	 Logging In

Chapter	 2

Logging In

Each time you log in, the DOMAIN/IX system executes programs
that define your node’s operating environment. The system uses
various start–up scripts to initiate processes that must be running
during the time that you are logged on to your node. One such script
contains certain DM environment variables (described in Appendix
B) that must be set in order for your node to be able to work
according to the methods we demonstrate. If your display’s behavior
varies from our description, contact your system administrator. We
do not recommend that you attempt to set your own environment at
first.

Once you learn more about how the system works, you can tailor the
operating environment on your node by modifying the scripts that the
system uses at log–in time. (For example, you can arrange to have
your own specific key definitions, default window positions, and tabs
defined each time you log in.) We suggest that you, as a new user,

Logging In	 2–2

ask someone with previous experience to make any modifications
other than those shown in this chapter.

Entering Your User ID and Password
When your node is running and the video display is turned on, a
log–in prompt appears at the bottom of the screen. The prompt
should read “login: ”. (This is the standard UNIX system log–in
prompt.)

NOTE:	 If your display shows the prompt as “Please log in: ”, ask
your system administrator to modify your DM environment
so that the proper message appears.

The “login: ” prompt indicates that the system is waiting for you to
enter your user ID and password. If you don’t know what names to
enter, ask your system administrator (who defines a user account for
every person authorized to use the system).

Your user account contains the name that the computer uses to
identify you (user ID), as well as your password. If security is
particularly important at your installation, user accounts may also
contain project and organization names. The system uses this
information to determine who can use the system and what resources
they can use.

As we said earlier, the cursor indicates where the system will display
the commands you type at your keyboard. Before logging in, move
the cursor to the right of the log–in prompt.

To log in, first enter your valid user ID at the “login: ” prompt. For
example, if your user ID is “mary”, the line would look like this:

login:  mary

If your system administrator says that project and organization names
are required, you must also type these names. For example, if your
project identifier is “newprog” and your organization is “systest”, the
line would look this way:

login:  mary.newprog.systest

	 2–3	 Logging In

If you make a mistake, press <BACKSPACE>. This key deletes
characters as it moves the cursor back toward the beginning of the
line.

When you have typed the required name(s) correctly, press
<RETURN> to submit this information to the system. (Press
<RETURN> whenever you wish to submit the line you’ve typed to
the system.) The system accepts the line you submitted and requests
your password.

After you have typed your user ID and hit <RETURN>, you will
be prompted for your password. The system does not display the
password you enter, but displays a dot for each character in the
password. (Passwords may be a total of eight characters long, and
may include both letters and numbers.) For example, if your
password is “route 66”, the following would be displayed:

Password:  <RETURN>

If the system finds a user account that matches the names you supply,
it logs you in and prints a “message of the day” at the bottom of your
screen.	 By default, such a message might be:

Welcome to DOMAIN/IX!

If the system cannot find a user account that matches the names you
supply, it first displays the following message at the bottom of your
screen:

Login Incorrect

It then repeats the log–in prompt and displays the expected format of
log–in information (l user ID [project [org]]). If you cannot get
logged in, ask your system administrator for help.

Understanding Your Display After
Log–In
Immediately after you log in, the Display Manager creates some
windows on your screen. The position of these windows depends
upon the type of display you’re using. Figure 2–1 shows window
positions on a landscape display.

Logging In	 2–4

In addition to presenting these windows, the Display Manager creates
process(es) in which one or more specified Shells are running. The
Shells created depend on how your DM environment is set. For
example, we have arranged for our Display Manager to create both
an AEGIS Shell and a C Shell. This is how our display will appear
after we are logged in and all the necessary Shell processes have been
created.

Figure 2–1. Window Positions on a Landscape Display

Notice that the cursor is in the lower left corner of your screen.
When you logged in, you saw that the cursor position indicates where
the system displays the commands you type. The cursor position also
indicates which program (Shell or DM) receives your commands.

Before entering a command, always move the cursor into the
appropriate window, depending on whether you are specifying a Shell
or a DM command. To move from window to window, press <NEXT
WNDW>. Depending on how many windows you have on your

	 2–5	 Logging In

display, you may have to press <NEXT WNDW> more than once to
move the cursor to the window where you will execute the
command.

When you pressed <NEXT WNDW>, you invoked a Display
Manager command to do the task. Instead of typing the DM
command that moves the cursor from window to window, you used a
single key called a DM function key. We’ll tell you more about using
these special keys in the next chapter, when we discuss methods for
invoking DM commands.

When you are ready to enter commands, remember to enter UNIX
Shell and AEGIS Shell commands at their given prompts (shown in
Figure 2–1), and DM commands at the “Command: ” prompt. To
move the cursor next to the Command: prompt, press <CMD>,
another DM function key that you’ll learn more about later.

Now let’s look more closely at the parts of the initial display. Refer to
Figure 2–1 as you read about the Shell process windows and the DM
windows in the next few paragraphs. The numbers in the following
list correspond to the numbers in the figure.

We’ll begin with the Shell process windows.

1.	 The process input window for a C Shell contains the %
prompt.	After you type UNIX commands in this window,
the C Shell reads the commands and invokes the appropriate
utility.

	 When you use this Shell to execute another program, that
program may display its own prompt in the process input
window. The prompt appears when the Shell is waiting for
your next instruction.

2.	 The process output window is the large window above the
process input window. It displays your commands (after you
press <RETURN>) and the Shell’s response to your
commands. The response can be information you requested,
a process status report, or an error message. The process
output window is a transcript, or record, of your interaction
with the system.

3.	 The window legend is the top border of the output window. It
contains the process identification name (Process_xx) and
the letters I (Insert) and S (Save). The letter “I” indicates
that you can insert text in the input window rather than
overstrike the existing command line. The letter “S”

Logging In	 2–6

	 specifies that you may scroll output one line at a time. Two
other mode indicators are also used. The letter “H”
indicates that the contents of the window are to be held
when output is sent to the associated pad. The letter “A”
tells you that the window will automatically enter hold mode.
Chapter 4 of the DOMAIN System User’s Guide explains
these window mode indicators in greater detail.

The DM windows are at the bottom of your screen.

4.	 The DM input window contains the “Command: ” prompt.
In this window, you type DM commands. When you press
<RETURN>, the DM reads these commands. Note the
mode indicator “I” to the right of the DM input window. It
tells you that the DM input window is operating in insert
mode.

5.	 The DM alarm window displays a small pair of bells when a
process displays a message in an output window that is
hidden by an overlapping window. The “Responding to
Alarms” section in Chapter 4 explains more about this
window.

6.	 The DM output window, like the Shell output window,
displays messages. However, the DM does not display the
commands you enter.

Ending the Session — Logging Off
When you’re ready to end the session, log off the system. Logging
off prevents others from using your user account. Log off if your
node is in a public place.

To log off, press <CMD> and type the lo (logout) command at the
DM prompt as follows:

Command:  lo <RETURN>

You needn’t worry about stopping active processes before logging off;
the DM will do this for you. After logging you off, the DM redisplays
the “login: ” prompt.

	 2–7	 Logging In

Summary
After reading this chapter, you should be able to log in, interpret
information on your display, and log out. In the next chapter, we’ll
explain how to enter Shell and DM commands.

	 3–1	 Entering Commands

Chapter	 3

Entering Commands

If you were following the last chapter, you are no longer logged in to
your node. Before you begin reading this chapter, you should log in
once more. Now you are ready to try entering some commands. As
you know, the examples in this book show a BSD4.2 C Shell prompt
(%), as well as the DM prompt (Command:), where necessary.
Recognizing these prompts should help you determine where to enter
particular commands. Don’t type the prompt itself; simply enter the
command line shown in color.

You must type UNIX commands exactly as shown, including any
capitalization. The DM and the AEGIS Shell do not differentiate
between uppercase and lowercase characters, so you can enter
AEGIS commands in any combination of cases. Remember to press
<RETURN> at the end of each command line.

Entering Commands	 3–2

Invoking the Display Manager
There are three ways to enter Display Manager (DM) commands:

•	 Type the command in the DM input window (next to the
“Command:” prompt).

•	 Press a specially–defined (and labeled) key, called a DM
function key.

•	 Press a control key sequence (<CTRL> combined with
another key).

Try typing a command in the DM input window. First, press <CMD>
to move the cursor next to the “Command:” prompt.	 Now type

Command: rs <RETURN>

After you press <RETURN>, the rs (refresh screen) command
refreshes the entire screen. You’ll see the display blink as the DM
clears the screen and redraws windows.

DM Function Keys
You usually won’t type DM command names at your keyboard.
Instead, you will use certain single keys (DM function keys) that
invoke DM commands. (We mentioned two of these keys, <NEXT
WNDW> and <CMD> in the last chapter.)

Each function key highlighted in Figure 3–1 provides access to two
commands. For example, the function key labeled CUT and COPY
lets you delete (cut) text and copy text. To enter the command in the
uppermost position (e.g., CUT), hold down <SHIFT> while you
press the function key. To enter the command in the lowermost
position (COPY, for example), simply press the function key.

	 3–3	 Entering Commands

Figure 3–1. Function Keys that Access Two Commands

Entering Commands	 3–4

Control Key Sequences
Often you’ll use control key sequences to invoke DM commands. To
enter a control key sequence, hold down <CTRL> while you press
another key.

Although you may want to use the DM function key <EXIT> to
remove the window from your screen, you can also use the CTRL/N
control key sequence to produce the same results. Try using CTRL/N
to remove a Shell input window.

Creating a Process
An important function of the Display Manager is the creation and
cancellation of Shell processes that you require during the time you
are logged in.

You can create a new Shell process any time you need another
computing environment. For example, if your initial Shell process is
busy compiling a program, you can create a new Shell process to
perform another task, such as formatting a text file.

Use <SHELL> to create a new process running a Shell program. The
DM creates a new Shell process, along with all the necessary pads
and windows. On your screen, you’ll see input and transcript
(output) pads as well as windows into those pads. The DM places the
cursor next to the Shell prompt in the new process input window, and
the process is ready to receive Shell commands.

NOTE:	 Until keys are redefined for UNIX functionality, the DM
creates an AEGIS Shell when <SHELL> is pressed. See the
next section for information on how to convert this process
to create a Bourne or C Shell instead.

Redefining Keys For UNIX Functionality
With all installations of standard software, we supply the command
files that define your keyboard. The file containing standard
keyboard definitions for the low–profile keyboard is called
“std_keys2”.

With every DOMAIN/IX installation, we provide alternate versions
of these standard key definitions – modified to provide UNIX system

	 3–5	 Entering Commands

functionality. These alternate key definitions reside in the files shown
in Table 2–1. (The equivalent files for the 880 keyboard are named
“sys5_keys” and “bsd4.2_keys”.)

Table 3–1. UNIX Key Definitions

Filename Contents

sys5_keys2 System V UNIX keyboard definitions for the
low–profile keyboard

bsd4.2_keys2 BSD 4.2 UNIX keyboard definitions for the
low–profile keyboard

The BSD4.2 and the System V definitions files include commands
that bind various keys to certain version–specific (or Shell–specific)
features. Initially, none of these key–definition files are automatically
invoked, although you may arrange for them to be.

To put any key–definition file into effect, execute the cmdf
(command file) command at the Display Manager prompt, where the
filename argument is one of the files mentioned earlier. For
example,

Command:  cmdf /sys/dm/bsd4.2_keys2 <RETURN>

invokes the BSD4.2 version UNIX key definitions on a low–profile
keyboard. The following explains how the keys are redefined when
the keyboard is remapped to the “bsd4.2_keys2” file:

<SHELL>	 This DM function key executes the DM	
command cp /bin/start_csh, which creates a C
Shell and runs a personal UNIX log–in file (e.g.,
“.login”).

<TAB>	 When shifted, this key inserts a literal ASCII tab
character.

Entering Commands	 3–6

<READ>	 This DM function key, which calls the DM to
read a file, takes on a different prompt. The	
prompt becomes “read file: ” rather than “Read
file: ”. Also, pathnames supplied as arguments
become case–sensitive where they would not be
otherwise (i.e., if “std_keys2” key definitions
were in effect).

<EDIT>	 This DM function key, which calls the DM
editor, takes on a different prompt. The prompt
becomes “edit file: ” rather than “Edit file: ”.
Also, pathnames become case–sensitive, where
they would not be otherwise (i.e., if “std_
keys2” key definitions were in effect).

<CTRL/I>	 This control–key sequence generates an
interrupt signal.

<CTRL/D>	 This control–key sequence produces an
end–of–file (EOF) signal.

<CTRL/Z>	 This control–key sequence generates a suspend
signal.

<CTRL/J>	 This control–key sequence breaks a previous
suspend signal (produced by using CTRL/Z).

Invoking the System V version of UNIX key definitions on a
low–profile keyboard (“sys5_keys2”) produces similar results. The
<TAB>, <READ>, and <EDIT> keys, and the <CTRL/I> and
<CTRL/D> control–key sequences, work in exactly the same manner
as described above. The following describes the features that differ:

<SHELL>	 This key executes cp /bin/start_sh, which
creates a Bourne Shell and runs a personal
UNIX log–in file (e.g., “.profile”).

<CTRL/Z>	 Not applicable.

<CTRL/J>	 Not applicable.

If the keys on your keyboard don’t work as we describe, your system
is probably reading a different set of key definitions. Ask your system
administrator for help.

	 3–7	 Entering Commands

NOTE:	 Remaining examples in this book assume a keyboard
redefined to “bsd4.2_keys2”.

Using UNIX Commands
Now that your keyboard has been redefined, creating a UNIX Shell
should be very easy. Hold down <SHIFT> while you press
<SHELL>. This key issues the DM command that creates a new
process running a Shell program. Since you’ve redefined your
keyboard to “bsd4.2_keys2”, the <SHELL> key creates a C Shell and
displays the windows associated with the new Shell process.

NOTE:	 You can create a new Shell process at any time. You may
use it to execute programs while your initial Shell process is
busy performing other tasks.

Move the cursor next to the UNIX Shell prompt in the process input
window and enter the date command. Remember to enter the
command exactly as shown (i.e., in lowercase letters).

%  date <RETURN>

In the process output window, the Shell displays the command you
typed and then invokes the utility program that displays the date and
time. For example, the output of the command that you just typed
might look like this:

Thurs Feb 6 16:54:24 EDT 1986

Using AEGIS Commands
While AEGIS commands don’t generally play a major part in this
book, some important ones are used in our examples. They help
demonstrate enhanced features of the DOMAIN/IX system that are
not supplied by standard UNIX utilities. Each time that you execute
a command beginning with /com from a UNIX Shell, you are
invoking an AEGIS command.

NOTE:	 Without the /com prefix, you may execute these commands
from an AEGIS Shell. If you do so, you should be aware
that special characters (wildcards) sometimes used as
shorthand in a UNIX Shell produce different results in an

Entering Commands	 3–8

	 AEGIS Shell. It is best not to use such devices with these
commands until you understand the full effects of doing so.

Correcting Typing Errors
Don’t worry if you make a typing mistake when you enter a
command. Usually, you’ll simply cause the system to display an error
message on the screen. If you notice your mistake before you press
<RETURN>, you can correct it by using one of the keys listed here:

•	 BACKSPACE

•	 CHAR DEL

•	 LINE DEL

•	 INS

As you learned earlier, <BACKSPACE> deletes characters as it
moves the cursor back toward the beginning of the line. For
example, if you type “date” and then press <BACKSPACE>, the
letter “e” disappears.

<CHAR DEL> deletes the character at the current cursor position.
For example, if you position the cursor on the “d” in “date” and
press <CHAR DEL>, the “d” disappears.

<LINE DEL> deletes the entire line, no matter where the cursor is
positioned on the line.

Notice the letter “I” in the Shell’s window legend. The letter also
appears to the right of the DM input window. It indicates that the
DM and Shell input windows are operating in insert mode. As you
may recall from Chapter 2, insert mode lets you change command
lines in the input window by repositioning the cursor and inserting
characters. The rest of the line moves right as you insert additional
characters. The system inserts the text you enter rather than
overstriking the existing command line.

To overstrike the command line, turn off insert mode by pressing
<INS>. If the cursor is in the Shell input window, the letter “I” in the
window legend disappears. If the cursor is in the DM input window,
the letter “I” following the DM input window disappears. The

	 3–9	 Entering Commands

system then replaces existing characters with the new characters you
type. You can turn insert mode back on by pressing <INS> again.

Getting Help
You can get information about available UNIX commands, system
calls, and functions with the man command. This command lets you
select and display on–line versions of reference material from the
DOMAIN/IX Command Reference and the DOMAIN/IX
Programmer’s Reference for either version of DOMAIN/IX software.
For example, to display the manual page for the ls command, type
the following:

%  man ls <RETURN>

The man command opens a separate read window containing a
formatted version of the manual page(s) for the ls command. While
the manual page is displayed, you may continue to execute other
UNIX Shell commands (including more man commands). When you
are finished reading the manual page, use <EXIT> to close the
window.

If you need help on DM or AEGIS commands, but cannot
remember the name of the command that you want to use, you can
view a complete listing of commands by pressing <HELP> (remember
to hold <SHIFT> down at the same time). The prompt that appears
in your DM input window should look like this:

Help on:

At this prompt, type the argument “commands” so that the line now
appears as follows:

Help on:  commands <RETURN>

If you know the name of the DM or AEGIS command, simply type
that name at the prompt. For example, to get help on the ap (alarm
pop) DM command, use this:

Help on:  ap <RETURN>

Entering Commands	 3–10

Summary
After reading this chapter, you should be able to create Shell
processes, execute some simple commands, and get help on any of
the commands that you use. In the next chapter, you’ll learn how to
better manipulate windows and pads.

	 4–1	 Managing Windows and Pads

Chapter	 4

Managing Windows
and Pads

Although you should be familiar with the concepts of windows and
processes by now, this chapter describes how the Display Manager
(DM) controls these entities on your display. Using DM function
keys and control key sequences, you will learn how to:

•	 View hidden information in a window

•	 Shuffle windows

•	 Change the size of windows

•	 Create, suspend, and stop Shell processes

Managing Windows and Pads	 4–2

Looking Inside a Window
Windows let you view information stored in the system. Pads contain
the information that you display. The information can be commands
that you type, responses from the system, text files, or pictures.

In other words, a window provides a view of a pad. The window can
present the entire pad, or only show part of the pad. Figure 4–1
illustrates a window over a pad, where only part of the pad is visible
through the window.

Figure 4–1. A Window Over a Pad

The dotted line in Figure 4–1 represents the window’s edges. On the
display, you can see only the characters inside the edges of the
window. The rest of the pad is hidden. There are two ways to view
the hidden parts of a pad: you can either move the pad under the
window or enlarge the window. Later in this chapter, you’ll learn
both ways to view hidden information.

Windows have such attributes as size and position on the screen,
position over a pad, and possibly color (if your node is a color
model). You can imagine them as pieces of paper that you can stack
and shuffle around on the screen just as you would if they were on

	 4–3	 Managing Windows and Pads

your desk. Later in this chapter, you’ll learn how to manipulate
windows, but first we’ll describe the kinds of pads the DM uses and
the keys that control them.

The DM provides three kinds of pads: input, transcript, and edit
pads. Input pads accept the commands you type at your keyboard. In
the last chapter, you typed commands through windows onto input
pads.

Transcript pads (process output pads) keep a running record, or
“transcript,” of your interaction with programs by displaying your
input and the program’s output. You view transcript pads through
process output windows. In our previous examples, the Shell
displayed the commands you entered and its response to your
commands on the transcript pad.

Figure 4–2 shows a process input pad for a C Shell, a DM input pad,
and a transcript pad.

Figure 4–2. input and Transcript Pads

Edit pads contain copies of files that the DM displays when you press
<READ> or <EDIT>. You can change text displayed on pads created

Managing Windows and Pads	 4–4

with <EDIT>. When you close the pad, the DM writes your changes
to the permanent file.	 Pads created with <READ> are read–only;
you can copy text from them, but you cannot add or delete text.
Chapter 6 explains file reading and editing in detail.

To see what an edit pad and window look like on your display, you
can read a text file supplied with your system. Press <READ>. The
cursor moves into the DM input window and the DM displays the
prompt “read file:”.

To read a file called “/doc/domain_ix_release_notes.sr9.2”, which
describes the details of the SR9.2 DOMAIN/IX software version,
type the filename and press <RETURN> as follows:

read file:  /doc/domain_ix_release_notes.sr9.2 <RETURN>

The DM creates a read–only window and pad to display the file
“/doc/domain_ix_release_notes.sr9.2”. (See Figure 4–3.)

	 4–5	 Managing Windows and Pads

Figure 4–3. A Read–Only Window and Pad

For now, leave this read–only window and pad on your display. You
will use it to learn about the keys discussed in the next several
sections.

Managing Windows and Pads	 4–6

Moving a Pad Under a Window
The keys listed in Table 4–1 move a pad around under a window so
that hidden text is in view.

Table 4–1. Keys that Move a Pad

Task Predefined Key

Move to first character in a pad

Move to last character in a pad

Move pad by pages

Move pad by lines

Move pad by characters

CTRL/T

CTRL/B

↑

↓

<SHIFT> / ↑
<SHIFT> / ↓

<SHIFT> / ←
<SHIFT> / →

As you read about moving a pad with the keys discussed in the next
three sections, try using them to move the pad containing the file
“/doc/domain_ix_release_notes.sr9.2”.

Moving to the Top and Bottom of a Pad
The CTRL/T sequence causes the DM to position the cursor at the top
of the current pad. CTRL/B performs the complementary function of
positioning the cursor at the bottom of the pad.

Let’s move the cursor from the top of our sample file,
“/doc/domain_ix_release_notes.sr9.2”, to the bottom of the file. To
do this, press CTRL/B.

	 4–7	 Managing Windows and Pads

The DM positions the cursor on the last character in
“/doc/domain_ix_release_notes.sr9.2”. Now press CTRL/T to move
the cursor back to the first character in the file.

Moving (Scrolling) a Pad Vertically
The vertical scrolling keys ↑ and ↓ scroll a pad vertically under
a window in units of half the height of the window.

The DM command pp (pad page) lets you modify the amount of
text that the boxed arrow keys scroll. To set the number of pages to
scroll, simply type the command followed by the number of pages
that you want to scroll. For example, to scroll three pages, type this:

Command:  pp 3 <RETURN>

NOTE:	 A “page” is defined as the smaller of either the number of
lines that fit in the window, or the number of lines between
the bottom of the window and the next form feed or frame.

You may also scroll a pad vertically by lines rather than by pages.
The <SHIFT>/ ↑ and <SHIFT>/ ↓ sequences move the pad up and
down one line, respectively. The cursor position does not change
relative to the pad; the pad simply slides by under the window.

Moving (Scrolling) a Pad Horizontally
The ← and → keys scroll a pad left and right under a window in
10–character increments.

The left and right scrolling keys <SHIFT>/← and <SHIFT>/→ scroll
a window over a pad in single character increments.

When you have finished experimenting with the keys that move a
pad under a window, close the window and pad containing
“/doc/domain_ix_release_notes.sr9.2”. To do so, keep the cursor in
the window and press <ABORT>.

Managing Windows
For the next few examples, you’ll need to create several new Shell
process windows. (Use <SHELL> to do this.) You are now ready to

Managing Windows and Pads	 4–8

learn how to shuffle and stack these windows, as well as how to
change a window’s size and position on the screen.

The predefined window control keys listed in Table 4–2 change the
size, position, and characteristics of windows on the screen. In
addition, all window control keys cause the DM to completely display
the selected window if any part of it is hidden. Note that we show
mouse key functions where appropriate.

Table 4–2. Predefined Window Control Keys

Task Keyboard Mouse

Shuffle windows

Copy text to process
input window

Enlarge or reduce a window

Move a window

<POP>

<AGAIN>

<GROW>

<MOVE>

Center Key

––

Left Key

––

Pushing or Popping a Window
Pushing or popping windows allows you to display windows that are
partially or completely hidden by other windows on your screen.
Pressing <POP> pops a window to the top of the pile or pushes a
window to the bottom of the pile of windows on the screen. These
keys allow you to shuffle windows the way you would papers on your
desk.	 Figure 4–4 illustrates how <POP> works.

	 4–9	 Managing Windows and Pads

Figure 4–4. Pushing and Popping Windows

Try using <POP> to shuffle the windows on your screen. Move the
cursor into a window that is partially hidden by another window.
Press <POP>.	 The window pops to the top of the pile.

Now move the cursor into a window that is completely visible. Press
<POP> again. This time the DM pushes the window to the bottom of
the pile.

If you have a mouse, you can use its center key to push and pop
windows.

Responding to Alarms
Experiment with <SHELL> and <POP> until you’re comfortable
manipulating windows. Now, position the windows so that one
window overlaps the other’s input window. Use <POP> to bring the
hidden Shell process window to the top. Then use the man (on–line

Managing Windows and Pads	 4–10

manual page help) command to request information about the cal
(print calendar) command. Type the following:

%  man cal <RETURN>

Quickly press <POP> again and send the top window to the bottom
of the stack.

If this exercise worked, the DM will display two small bells in its
alarm window. If your system has a speaker, the DM also emits an
alarm tone. The alarm informs you that the system is doing
something in a window you can’t see. Enter the DM command ap
(alarm pop) to look at the window requesting your attention. For
example, press <CMD> and type

Command:  ap <RETURN>

After you press <RETURN>, the DM pops the window that needs
attention. Refer to Chapter 4 in the DOMAIN System User’s Guide
for more information about alarms.

For now, leave the window containing the information on cal on your
screen; we’ll copy one of the sample commands from it in the next
section.

Copying Text to the Process Input Window
Pressing <AGAIN> is an easy way to repeat a one–line Shell
command that you typed earlier. This key copies a line from a
transcript pad into the process input window.

To see how this works, copy the command line that you typed earlier
(man cal). Follow these steps:

1.	 Move the cursor into the transcript pad, and position it on
the first letter in “man”.

2.	 Press <AGAIN>. The DM copies all the text from the
current cursor position to the end of the line, and displays
the copied text in the process input window.

If anything in the process input window is waiting for processing, the
DM appends the copied line to that text. Once you have copied the
command line to the process input window, you can edit the line or
enter it just as it is by pressing <RETURN>.

	 4–11	 Managing Windows and Pads

Since the DM appends new information to the transcript pad, the
command you want to copy may be hidden. Use the scrolling keys to
move the transcript pad until the command is in view.

You can also copy text from other pads (pads displaying Help
information or pads created with <READ> or <EDIT>, for example),
and display the text in the process input window. You first mark the
text you want to copy and then use <COPY> and <PASTE>.

Let’s copy one of the sample command lines from the pad displaying
the on–line help information about the cal command. If the window
that contains the information you need is hidden, use <POP> to bring
it to the top. Then follow these steps:

1.	 Position the cursor on the “c” shown in the first example
(cal 1985) at the bottom of the window displaying
the output from the man command.

2.	 Press <MARK> then ⇥ . The DM highlights the sample
command.

3.	 Now press <COPY>.

4.	 Move the cursor into the process input window.

5.	 Press <PASTE>. The DM displays the copied command in
the process input window.

6.	 Press ⇥ to move the cursor to the end of the pasted line.

After you press <RETURN> to enter the command, you’ll see the
calendar for the year 1985 displayed on the transcript pad.

Changing Window Size
If you want to make a window larger or smaller, use <GROW>. The
DM lets you select a window edge or corner, which you can move
across the screen to change the window’s size. To change the size of
one of the windows on your screen, follow these steps:

1.	 Decide which edge or corner you want to change, and move
the cursor to it.

Managing Windows and Pads	 4–12

2.	 Press <GROW>. A flexible “rubberband” border appears.
Figure 4–5 illustrates this flexible border.

3.	 Move the cursor to stretch or shrink the flexible border until
it indicates the new window size you want.

4.	 Press <MARK>. The old window will shrink or expand
according to the position of the flexible border.

Figure 4–5. Changing a Window’s Size

If you want to move just one edge, move the cursor only in the
direction perpendicular to that edge. Moving the cursor vertically
and horizontally causes a corner to move.

If, after the flexible border appears, you decide not to change the
window size, press CTRL/X. Your node will emit a single “beep” and
the DM will display the message “Echo mode aborted” on its output
pad.

	 4–13	 Managing Windows and Pads

You can also change window size using a mouse. To do so, follow
these steps:

1.	 Place the cursor near the edge or corner you wish to move.

2.	 Press the left–most mouse key and hold it down. The DM
executes <GROW>, and the flexible border appears.

3.	 While you hold the left key down, move the mouse to
indicate the new window size.

4.	 Now release the key. The DM executes <MARK>, and the
window changes size.

Moving a Window
If you want to change the position of a window without changing its
size, use <MOVE>. Use these steps to move one of the windows on
your screen:

1.	 Place the cursor on an edge or corner of the window.

2.	 Press <MOVE>. A movable copy of the window border
appears.

3.	 Move the cursor to position this border where you want the
window to appear.

4.	 Press <MARK>. The window then moves to its new location.

If, after the movable border appears, you decide not to move the
window, type CTRL/X.

Stopping a Process
When you’ve finished experimenting, you can stop the Shell
processes you created and close the associated pads and windows.

Before you do, however, you may want to save the contents of the
transcript pad. When you close a window or log off, the DM deletes
all transcript pads on your display. However, the DM command pn
(pad name) lets you save a copy of a transcript pad in a named file.

Managing Windows and Pads	 4–14

Move the cursor onto the transcript pad, then press <CMD> and type
the following:

Command:  pn save_file <RETURN>

The pn command makes the temporary transcript pad a permanent file
named “save_file”. The DM continues to add transcript pad output
to “save_file” until you stop the process and close the windows.
Refer to Chapter 4 in the DOMAIN System User’s Guide for more
information about the pn command.

To stop a Shell process and close its windows and pads, follow these
steps:

1.	 Move the cursor into the process input window and press
CTRL/D. (To enter this control key sequence, hold down
<CTRL> while you press <D>.) CTRL/D stops the process,
deletes the input window, and closes all pads associated with
the process. The system displays:

% ***EOF***
logout
Pad Closed

NOTE:	 The “logout” message shown above only occurs in
a C Shell. If using a Bourne Shell, you should still
see an “EOF” (End–of–File) and a “Pad Closed”
message when you execute a CTRL/D.

	 The process input window disappears from your screen, but
the window to the transcript pad remains.

NOTE:	 If you have started other Shell processes from the
same process window, you must execute a CTRL/D
for each of these processes. Only after each of the
processes started in that process window has been
stopped will the “Pad Closed” message appear.

2.	 To remove the window to the transcript pad from your screen,
keep the cursor within the window and press <EXIT>.

	 4–15	 Managing Windows and Pads

Suspending a Process
In addition to being able to stop a Shell process, you can suspend it
for a period of time and resume processing later. This action does
not close the windows and pads associated with the process.

To suspend a Shell process, move the cursor into the process input
window and press CTRL/Z. To begin again where processing left off,
move the cursor into the process input window and press CTRL/J.

NOTE:	 You can only suspend a process if your keyboard definitions
have been redefined to “bsd4.2_keys” or “bsd4.2_keys”.

Summary
In this chapter, you learned how the DM controls windows, pads,
and processes. The next chapter explains how the DOMAIN/IX
system organizes information.

	 5–1	 Information Organization

Chapter	 5

Organizing
Information

The DOMAIN/IX system organizes related information in files. We
supply certain files with system software. You can create other files,
and determine their contents. A file might contain a memo, a
program, or a picture — anything you like.

The DOMAIN/IX system organizes related files in directories. You
can also create directories and decide which files to store in them.
We will explain how to create files and directories later in this
chapter. The system keeps track of its files and directories by
arranging them in a hierarchical structure called the naming tree.

This chapter introduces the basic concepts you’ll need to understand
and use the naming tree. Figure 5–1 shows a sample naming tree.

Information Organization	 5–2

Figure 5–1. A Sample Naming Tree

The naming tree includes every file and directory in the network (not
just on your node). Each directory in the naming tree appears above
the files and subdirectories that it contains. Naming tree components
are called objects.

In addition to files and directories, the naming tree includes a third
type of object — links. A link points directly to, or contains the
name of, another network object. When the DOMAIN/IX system
uses a link, it may replace the link name with the object name that
the link contains. We will explain how to create and use links later in
this chapter. For now, just think of links as a special object type that
enables you to take a detour from one part of the naming tree to
another.

The object names that we use in the examples in this chapter are
based on the sample naming tree in Figure 5–1. The object names in
your naming tree will be different.

	 5–3	 Information Organization

Using Pathnames
In order to use an object in the naming tree, we must be able to
locate it. A pathname describes the path that the operating system
must take to get from some starting point in the naming tree to a
destination object. For example, consider the file “notes” in Figure
5–1. One pathname we could use to locate “notes” looks like this:

//node_2/jones/tutorial/notes

A pathname begins with the starting point’s name and includes every
directory name between the starting point and the destination object.
A pathname ends with the destination object’s name. Slashes
separate names within a pathname. An individual name (between
slashes) may not exceed 32 characters. The entire pathname may not
exceed 256 characters, including the slashes.

In the pathname “//node_2/jones/tutorial/notes”, the starting point
is the directory at the top of the naming tree, called the network root
directory. (Double slashes (//) refer to the network root directory.)
The destination object is the file “notes”. The directories between
the starting point (//) and the destination object ("notes") are
“node_2”, “jones”, and “tutorial”. Figure 5–2 highlights the path
the system follows in its search for “notes”.

Information Organization	 5–4

Figure 5–2. Sample Pathname

As you’ll see in the following sections, not all pathnames begin with
the network root directory. The system provides shorter ways
to specify a pathname, depending on your current location in the
naming tree.

Let’s examine the parts of the naming tree more closely.

Where Am I?
Perhaps Figure 5–1 would be more meaningful if it included a “You
Are Here” sign. Let’s work our way from the top of the naming tree,
the network root directory, to the directory you’re currently using —
your working directory.

	 5–5	 Information Organization

The Network Root Directory (//)
The network’s top–level directory, the root directory (//), is a list of
directory names. It contains the name of each network node’s top
(or entry) directory. To display the contents of your network root
directory, type the ls (list directory) command and the pathname //
as follows:

%  ls // <RETURN>

Use the ls command to list the contents of any directory in your
network. You can refer to any object in your network by specifying a
pathname that begins with the root directory (//). (You must have
the appropriate permissions to access the objects you specify. We
explain these rights later on in this chapter.)

If you could list the contents of the root directory in our sample
naming tree (Figure 5–1), you would see “node_1”, “node_2”, and
“node_3” listed on your screen. Thus, the sample naming tree
represents a network of these three nodes.

Your Node Entry Directory (/)
The node entry directory is the top directory on each node and is a
subdirectory of the network root directory. In our sample naming
tree, the node entry directories are “node_1”, “node_2”, and
“node_3”. To display your user ID and your node’s entry directory
name, type the /com/lusr (list user) command as follows:

%  /com/lusr –me <RETURN>

Note that the command line here uses the –me command option.
(Most commands let you modify command execution by specifying
one or more options. For more information about command options,
see the next chapter.) The /com/lusr –me command line produces
information in the following format:

jones.systest.dev.24XP	 //node_2

user, group, organization, node IDs	 node entry directory name

Information Organization	 5–6

In our example, the command output assumes that your node is
“node_2”, your user ID is “jones”, your project identifier is
“systest”, your organizational identifier is “dev”, and the
identification number of the node that you are currently using is
“24XP”.

If you omit the –me option, the /com/lusr command lists all network
users and their respective node entry directories. If you’re using a
diskless node, your node uses the entry directory of a disked partner
node.

You can use a single slash (/) as a shorthand way of referring to your
node’s entry directory. For example, the following command lists the
contents of your node entry directory:

%  ls / <RETURN>

When you begin a pathname with a single slash (/), the system begins
its search in the node entry directory of the node that is physically
connected to your display unit. (If your node is diskless, the system
begins its search in the entry directory of your node’s disked
partner.)

You could also list the contents of your node entry directory by
typing the ls (list directory) command and a pathname that includes
the root directory (//) and your node entry directory name. For
example, if you were working on “node_1” in the sample naming
tree shown in Figure 5–1, the command

%  ls //node_1 <RETURN>

would list “backup” and “smith”.

To refer to the entry directory on another node, use a pathname that
starts with the root directory (//) and includes the name of the other
node’s entry directory.

Your Home Directory
The directory where the system locates you when you log in is called
your home directory. Your user account contains your home
directory name. When you log in, the system places you in the home
directory specified in your user account.

	 5–7	 Information Organization

You can go from any location in the network naming tree to your home
directory by using the cd (change directory) command as follows:

%  cd <RETURN>

Your Working Directory
Your working directory is the directory in which you are currently
located. When you log in, the system sets the working directory to
the home directory specified in your user account.

To display the name of the directory you’re using (your working
directory), enter the pwd (print working directory) command as
follows:

%  pwd <RETURN>

The working directory influences where a process creates or searches
for object names (the names of files, directories, or links). For
example, let’s say your working directory is “//node_1/smith” in our
sample naming tree. If you instruct the process to create a directory
named “newdir” using die mkdir (make directory) command, the
UNIX Shell process creates the new directory in “//node_1/smith”
(the current working directory).	For example:

%  mkdir newdir <RETURN>

The new directory, “//node_1/smith/newdir” becomes a subdirectory
of the current working directory, “//node_1/smith”. The new
directory appears beneath the current working directory in the
naming tree. (If you enter the ls command, “newdir” appears in the
list of the working directory contents.) Figure 5–3 illustrates the
location of “newdir” in the naming tree.

Information Organization	 5–8

Figure 5–3. A New Directory in the Naming Tree

You can change the working directory to another directory using the
cd command. Type

%  cd new_directory <RETURN>

where “new_directory” is the name of the new working directory.

Parent Directories
A parent directory is the directory above the current working
directory. For example, if your current working directory is
“//node_1/smith/newdir”, the parent directory is “//node_1/smith”.
To display the parent directory’s name and contents, type

%  ls .. <RETURN>

	 5–9	 Information Organization

The double periods (..) refer to the directory one level above the
current working directory. You can use a combination of double
periods and slashes to cause the system to back up more than one
level above the current working directory.

For example, let’s say that your current working directory is
“//node_1/smith/newdir/dir1/data”, and you want to change the
working directory to “//node_1/smith/newdir”. You would type the
following:

%  cd ../..

Pathname Symbols — A Review
As you have seen in the previous sections, you can refer to any
object in your network by using a pathname that begins with the root
directory (//). The system also provides shorthand symbols that you
can use in place of longer pathnames. Table 5–1 summarizes
pathname starting–point symbols.

Table 5–1. Pathname Starting–Point Symbols

If your pathname
starts with this symbol:

The system begins the name
search in this directory:

//

/

No symbol or .

..

Network root directory

Node entry directory

Working directory

Parent directory

Figure 5–4 illustrates how you can use different symbols to refer to
the same directory in the naming tree.

Information Organization	 5–10

Figure 5–4. Pathnames Starting with //, /, and ../

Remember that the examples in Figure 5–4 assume that the node
entry directory is “//node_x” and that the working directory is
“//node_x/john”. Each of the pathnames in Figure 5–4 searches for
a destination object named “mary”. The object’s full pathname is
“//node_x/mary”. The pathname “/mary” instructs the system to
look for “mary” in the node’s entry directory (/). The pathname
“../mary” instructs the system to move up to “//node_x” and then
look for an object named “mary”.

Using Links
As you use the system, you may find that you frequently access
objects with very long pathnames. Instead of typing the long

	 5–11	 Information Organization

pathname each time you want to use an object, you can create a
special object type called a link.

Links are essentially of two types: hard links and symbolic (or soft)
links. Hard links point directly to an object, and they may not span
file systems or refer to directories. Symbolic links, however, point to
link text (an object’s pathname), can span file systems, and may
refer to directories. Although you may want to use symbolic links
more frequently, we’ll discuss both types of links in this section.

Let’s say that you work on “node_1” in our sample naming tree
(Figure 5–1), and you often use the file “sched”. To access “sched”,
you could type the following pathname each time you want to use the
file:

//node_3/brown/project/sched

It would be much easier, however, to create a link to “sched”. Then,
whenever you wanted to access “sched”, you could use the name
of the link to get to it. To create a symbolic link, use the ln (link)
command with the –s option. Let’s call the link that represents the
“sched” file in our example “mylink”. To create “mylink” and place
it in your current working directory, type the following:

%  ln –s //node_3/brown/project/sched mylink <RETURN>

This creates a symbolic link. A symbolic link contains the name of
the file to which it is linked (the link text). Thus, when you use a link
name as a pathname or as part of a pathname, the UNIX Shell
substitutes the link text (“//node_3/brown/project/sched”) for the
link name (“mylink”).

By default (with no options specified), the ln command creates hard
links. Thus, if you type the following command line,

%  ln //node_3/brown/project/sched mylink <RETURN>

"mylink” points directly to “//node_3/brown/project/sched”. Hard
links are indistinguishable from the original directory entry to which
they point, so any changes made to the file are independent of the
name used to reference the file.

Therefore, if you create a hard link to “sched”, and the file is
subsequently modified using the DM editing function, your link
points to the original “sched” file (called “sched.bak” after the

Information Organization	 5–12

editing session is complete) and not the newly–modified version of
the file (called “sched” after the editing session is complete).

NOTE:	 When you use the DM editor on a file, the modified version
of the file assumes the original filename; the initial version
of the file assumes the filename plus a .bak suffix.

If you would rather have your link always pointing to the latest
version of “sched”, you must create a symbolic link using ln –s as
shown above.

For more information about links, see the ln command description in
the DOMAIN/IX Command Reference.

File Permissions
As you saw in an earlier example, you can use the ls (list directory)
command to determine the permissions set for any given file. Test
this command on a file that you have created. The file’s permissions
should appear as some form of the set “rwxrwxrwx”. Each “r”
represents read permission, each “w” write permission, and each “x”
execute permission. Note that, if a file is executable or writable, it is
also automatically readable.

The first set describes the permissions of the file owner (usually, the
user ID of the person who created the file). The next set shows
group permission, allowing the creator of the file to restrict access to
the file to a set project group (usually, the same as project ID). The
final set shows permission of others (excluding file owner and project
group).

NOTE:	 DOMAIN system software also provides another means of
showing and setting file protections called an Access Control
List (ACL). The AEGIS commands /com/acl and
/com/edacl, respectively, perform these functions. Though
you should use UNIX file protections most of the time, you
should know that ACL format is more extensive (i.e.,
provides more types of permissions) than that provided by
UNIX system permissions. See Chapter 8 of the DOMAIN
System Command Reference for more information about
ACL.

If you want to change permissions on a file that you own, use the
chmod (change mode) command. You may change permissions of

	 5–13	 Information Organization

the file according to absolute (using a hexadecimal number) or
symbolic (using one or more alphabetic characters) modes and
produce the same results.

NOTE:	 The owner of a file created via the DM editor may be listed
as “<none>” until you explicitly specify the correct name of
the file owner. To change ownership from “<none>” to your
user ID, execute the chmod command on the file (see
below). If you prefer, you may use AEGIS ACLs to name
yourself, by default, as owner of files that you create within
a directory.

As a brief example of how the chmod command is used, suppose
that you want to change the permissions of a file that is currently
readable, writable, and executable by all users on your network. You
want to ensure that only you, the file owner, have complete access
permissions. You also want to grant only read rights to your project
group and all others. The following command line, where “myfile”
is the file whose permissions are being changed, shows how to make
the change using symbolic mode:

%  chmod g=r,o=r myfile <RETURN>

This command line shows the same change done in absolute mode:

%  chmod 744 myfile <RETURN>

For more information about specific modes to use for changing file
permissions, consult the DOMAIN/IX Command Reference. Look
under the entry for the chmod command.

Summary
This chapter described how the DOMAIN/IX system organizes files,
directories, and links in the naming tree. You learned how to use
pathnames to get from one part of the naming tree to another, and
how to create new objects in the naming tree. The next chapter
explains the many ways that you can create, edit, and read text files.
It also describes how to print, copy, and delete files.

	 6–1	 Using Files

Chapter	 6

Using Files

This chapter describes how to create, edit, and read files using
DM function keys, control key sequences, and commands. It also
mentions two other available editors, vi (a display–oriented editor)
and ed (a line editor). In sample editing sessions, you’ll create a new
file, enter text, and modify the text. This chapter also explains how
to print, copy, and delete files.

File Naming
Before you begin creating files, be aware of certain restrictions
regarding their naming:

•	 Filenames are limited to 32 characters, and may include
letters of the alphabet, numbers, dots (.), underscores (_),
etc. In fact, the only character that they may not contain are

Using Files	 6–2

	 slash (/) or null. If a filename contains a character that the
UNIX Shell interprets specially, that character must be
escaped (i.e., preceded by a backslash).

•	 Text files should not be named with the same names as
commands; otherwise, the Shell attempts to execute the text
file as if it were a command.

•	 Case is an important consideration. All UNIX programs
consider “file”, “File”, and “FILE” to be the names of
three separate files. Remember that the DOMAIN/IX system
is case–sensitive.

Using the DM to Create a File
The <EDIT> function key instructs the DM to open a window to a
file. If you want to create a new file, you can use <EDIT> for that
purpose. After you press <EDIT>, the cursor moves to the DM input
window and the DM prompts you to specify the name of the file
you wish to create (a file that does not already exist in your current
working directory):

edit file:

The DM then opens an edit window for the file. Using what you
learned about cursor control, you should be able to create a simple
file. As you may recall, once you’ve positioned the cursor, you can
use the following keys to correct errors:

•	 BACKSPACE

•	 INS

•	 CHAR DEL

•	 LINE DEL

When you’ve finished writing, leave the cursor in the window and
press <EXIT>. This closes the edit window and saves your
newly–created file.

	 6–3	 Using Files

If you decide that you do not want to save the file, use <ABORT> to
discard it. When you press <ABORT>, the DM displays the following
message:

File modified. OK to quit?

Enter y or yes to discard the changes you’ve made and close the edit
pad and window. The DM closes the edit pad and window without
saving the changes you made during the session. Enter n or no to
resume editing.

NOTE:	 When you create a file using the DM editor, UNIX
programs may assign ownership of that file to “<none>”
until you explicitly specify the correct name of the file
owner. It is especially important to remember this when
creating UNIX Shell start–up files, since UNIX Shells only
read these files if they are owned by the person opening the
Shell. This assignment of ownership to “<none>” takes
place only because the DM editor is unable to determine
who really owns the file. (To prevent further occurrences of
this condition, you may wish to use AEGIS ACLs to specify
yourself as owner of any files that are created within a
particular directory. See the DOMAIN System User’s Guide
for more information on ACLs.) You can change ownership
from M<none>’’ to your user ID by executing the chmod
command on the file.

As you create files, remember that if a file is executable or writable,
it is also automatically readable.

Using the DM to Read a File
When you press <READ>, the cursor moves into the DM input
window and the DM displays the prompt

read file:

You must specify a file that already exists. Since <READ> invokes
the cv (create view) command, specifying a filename that does not
exist causes the DM to issue the following error message:

(cv) filename – File not found

Using Files	 6–4

You can supply the name of a file in the current working directory,
or use a pathname to refer to a file anywhere in the network.

Let’s read a sample file. We’ve supplied a text file, called
“sample_edit”, that you can use to learn about the DM’s read
function. Press <READ> and type the file’s pathname as follows:

read file:  /domain_examples/getting_started/sample_edit <RETURN>

The DM displays the file “sample_edit”. Notice the letter R (for
Read) displayed in the window legend. Because “sample_edit” is
now displayed in a read–only window, you cannot modify its
contents. If you attempt to do so, the DM displays this message:

Text is read–only

NOTE:	 Although you cannot modify text displayed in a read
window, you can change a read window into an edit window
by pressing CTRL/M. Remember, however, that you must
have write permission to the file you specify if you are to
edit it.

The right–most mouse key also opens files for reading. To use this
key, you must first display the name of the file you wish to read on
your screen. As you recall, typing the ls (list directory) command at
a UNIX Shell prompt lists all the names of the files in a given
directory. When the name of the file you desire to read appears on
your screen, point to it with the cursor. When you press the
right–most mouse key, the DM displays the contents of the filename
nearest the cursor.

When you finish reading “sample_edit”, execute the following steps
to close the file’s window and pad:

1.	 Move the cursor into the file’s window.

2.	 Press <ABORT>.

Using the DM to Edit a File
Now let’s use <EDIT> to change the contents of an existing file.
Press <EDIT>. As before, the DM asks you to specify the name of
the file you wish to use (one that already exists). The cursor moves

	 6–5	 Using Files

into the DM input window, and the DM displays the following
prompt

edit file:

After you enter the name of an existing file, the DM opens the file
for editing. It also copies the original version of the file for backup
purposes. This “backup” copy of the file appears in your directory
with the original filename plus the .bak suffix.

Again, let’s use “sample_edit” to learn about the DM’s editing
functions. To open “sample_edit”, type the following pathname next
to the DM edit prompt:

edit file:  /domain_examples/gettlng_started/sample_edlt <RETURN>

When you press <RETURN>, the DM opens an edit window to the
file “sample_edit” as shown in Figure 6–1. Notice that the pathname
appears in the window legend. We’ve included a few errors
(highlighted in Figure 6–1) that we’ll use to demonstrate some
editing functions.

Using Files	 6–6

Figure 6–1. A Sample Editing Session Using the DM

Making Corrections to Text
You can move the cursor to any text position using the arrow keys,
the touchpad, or the mouse. Once you’ve positioned the cursor, you
can use <BACKSPACE>, <INS>, <CHAR DEL>, AND <LINE DEL>
to correct errors. Although we have already mentioned how to

	 6–7	 Using Files

use these keys in a previous chapter, we will let you practice using
them by working on a sample file.

Let’s start by correcting the errors highlighted in Figure 6–1. We
omitted the letter “i” from the word “with” in the first line of the
second paragraph. Position the cursor on the letter “t” and type “i”.
Because the edit window is in insert mode, the letters to the right of
the cursor move right when you insert a new character. By default,
insert mode is on when you begin an editing session, and the letter I
appears in the edit pad’s window legend.

Press <INS> to turn insert mode off. Notice that the letter I
disappears from the window legend. Now, any new characters that
you type will overstrike (replace) existing characters. Let’s try it.
Move the cursor to the “s” in “schooling” in the last paragraph.
Type the word “education”. To turn insert mode back on, press
<INS> again.

Move the cursor to an “o” in “schoool” in the second line of the
third paragraph. To delete the extra “o”, press <CHAR DEL>.

To delete the extra line in the last paragraph, move the cursor onto
the line and press <LINE DEL>.

Defining a Range of Text
Before you can move, copy, or substitute text, you must define the
range (or block) of text on which you want the DM to operate.

To define a range of text, place the cursor at the beginning of the
range and press <MARK>. Then move the cursor to the end of the
range. As you move the cursor, the DM highlights the text, showing
you exactly what the range is. (Please note that the character under
the cursor at the end of the range is not included within the range.)
After you position the cursor at the end of the range, you either press
a DM function key or type a command in the DM input window.

If you do not define a range, the default range for cut, copy, and
substitute commands begins at the current cursor position and ends
at the end of the line.

Cutting and Pasting (Moving) Text
The DM allows you to delete portions of text from a file, and to paste
them in a different location in the same file, or in another file. You

Using Files	 6–8

must define a range of text before you execute the DM cut
command.

To accomplish a cut or copy (see the next section) operation, the
DM uses a paste buffer. A paste buffer is a temporary file that holds
text that you have cut or copied so that it can be pasted in elsewhere.

Let’s try a cut and paste operation. We’ll move “Schools Scramble
To Catch Up with the Computer Explosion” in Figure 6–1 from the
bottom to the top of the file. Follow these steps:

1.	 To define the range for the operation, move the cursor to the
first character position in the line before “Schools Scramble
To Catch Up”, and press <MARK>. Now move the cursor to
the bottom of the file. As you move the cursor, notice the
highlighting. This lets you see exactly what text falls within
the range.

2.	 Press <CUT> (remember to hold <SHIFT> down at the same
time). The DM deletes the text in the range you specified
and writes it into the paste buffer.

NOTE:	 The DM writes all deleted text into this buffer;
however, it saves only the text deleted during
the last DM operation. Therefore, don’t delete
anything else until you reinsert the paste buffer
contents. Otherwise, you will lose the text you are
attempting to move.

3.	 To place the contents of the paste buffer at the top of the
file, press CTRL/T to move the cursor to the top of the file,
and then press <PASTE>.

In this exercise, you used the DM’s default paste buffer to hold the
text you cut. You can create your own paste buffers (up to 100),
each containing different blocks of text. To learn how to create and
use paste buffers, see the cut, copy, and paste commands in the
DOMAIN System User’s Guide.

To delete a range of text without pasting it in elsewhere, define the
range and then press <CUT>.

	 6–9	 Using Files

Copying and Pasting Text
The DM allows you to copy text into the paste buffer without deleting
it from your file. The steps for copying text are similar to the steps
for moving text. The difference is that you use <COPY> instead of
<CUT>. You can copy text to a different location within a file or
into another file.

In the next exercise, we’ll copy a range of text into a new file. To do
so, follow these steps:

1.	 Define any range of text in the file “sample_edit” in Figure
6–1. Move the cursor to the beginning of the range you want
to copy, and press <MARK>, Then move the cursor to the
end of the range. The DM highlights the text as you move
the cursor.

2.	 Press <COPY>. The DM copies the range of text into the
paste buffer. The original text remains undisturbed.

3.	 To create the new file, press <EDIT>. Next to the “edit file:”
prompt in the DM input window, type

edit file:  copied_text <RETURN>

	 The DM opens an edit window and pad to the new file
“copied_text”. The cursor is in the upper–left corner of the
new file.

4.	 Press <PASTE>. The text you copied to the paste buffer
appears in the file “copied_text”.

To close “copied_text” and save its contents, keep the cursor in the
window and press <EXIT>.

Searching for Text
The DM search function makes it easy for you to locate a particular
text string in a file. In the DM input window, you type the string
between slashes (/string/) or backslashes (\string\). A string
enclosed in slashes instructs the DM to search forward from the
current cursor position, and a string enclosed in backslashes instructs
the DM to search backward from the current cursor position. For

Using Files	 6–10

example, to search for the string “computer” in “sample_edit”,
follow these steps:

1.	 Press CTRL/T to move the cursor to the top of the file.

2.	 Press <CMD> to move the cursor to the DM input window.

3.	 Enter the search command as follows:

Command:  /computer/ <RETURN>

The DM then moves the cursor to the first occurrence of “computer”
(in the first paragraph).

The CTRL/R and CTRL/U sequences repeat the last search forward
or backward, respectively. For example, if you press CTRL/R now,
the DM searches forward for the next occurrence of computer (in
the second paragraph). If you then press CTRL/U, the DM moves
the cursor back to the first occurrence of “computer” in the first
paragraph.

Because the DM saves your most recent search command, you
can repeat a search even if you’ve entered other (non–search)
commands since you entered the search command.

Searches are case–insensitive by default. This means that “/mary/”
locates “mary”, “MARY”, “Mary”, and even “mARY”. You can
use the DM command sc (search case–sensitive) to perform
case–sensitive searches. The DOMAIN System User’s Guide explains
this particular command.

Canceling a Copy, Cut, or Search
To cancel a copy, cut, or search operation, use the CTRL/X
sequence. For copy and cut operations, the DM removes the
highlighting that indicates the range of text you are defining. For a
search, the DM displays the message “Search aborted”.

Substituting Text
The DM also provides an easy–to–use search and substitute
command, s (substitute). You can use it to search a file or part of a
file for a text string, and to replace the string with a new string. First,
you must define the range of text you wish to search and substitute.

	 6–11	 Using Files

Then, you can use the DM search and substitute command to
perform the replacement.

For example, to replace every tilde (~) in “sample_edit” with the
letter “o”, you must:

1.	 Define the range of text you wish to search and substitute.
The range for this search/substitute operation is from the top
to the bottom of the file. To communicate this information to
the DM:

A.	 Move the cursor to the top of the file (CTRL/T does
this) and press <MARK>.

B.	 Next move the cursor to the bottom of the file (CTRL/B
does this) and press <CMD>.

	 Steps A and B tell the DM that the range for the next
DM command begins at the top of the file and ends at
the bottom.

2.	 Next, enter the following search and substitute command:

Command:  s/~/o/ <RETURN>

	 The DM replaces every tilde (~) in the file with the
letter “o”. If you had not marked a range, the DM would
have searched only the line that was to the right of the cursor
when you pressed <CMD> in Step 1B.

Undoing Previous Commands
The <UNDO> function reverses the effect of the most recent DM
command you entered. It keeps a history of activities in the DM
input pad and edit pads in reverse chronological order. To undo the
previous DM command, press <UNDO>. Successive use of the
UNDO function key or command undoes DM commands further
back in history.

The history of DM activities consists of circular lists (one for input
pad activities and one for each edit pad). When the lists are full,
they eliminate the oldest entries to make room for new ones.

Using Files	 6–12

NOTE:	 <UNDO> works for DM operations only; it does not reverse
the effect of Shell commands once those commands have
been executed.

Using the UNIX Display–Oriented
Editor (vi)
You may prefer to use vi, the UNIX display–oriented (visual) text
editor, when you are editing files. When you use vi, changes you
make to the file are reflected in what appears on your node’s screen.
The position of the cursor on the screen indicates the position within
the file. The editor uses commands that allow you to manipulate text
in a variety of ways.

Consult the DOMAIN/IX Text Processing Guide for complete details
on the use of vi. For a much briefer description of usage, see the
DOMAIN/IX Command Reference, or simply execute the man
command from a UNIX Shell for an on–line display of the command
reference page.

Using the UNIX Line Editor (ed)
The standard UNIX line editor is named ed. When you specify the
name of an existing file, ed reads the file into a temporary file called
its buffer. Thus, the line editor operates on a copy of the file it is
editing. Changes that you make in the copy have no effect until you
write them.

Consult the DOMAIN/IX Text Processing Guide for complete details
on the use of ed. For a much briefer description of usage, see the
DOMAIN/IX Command Reference, or simply execute the man
command from a UNIX Shell for an on–line display of the command
reference page.

Copying a File
To copy the contents of a file and store it in another file, use the cp
(copy file) command at the UNIX Shell prompt. Specify both the
name of the file to be copied and the name you intend to give the
new file. For example, to make a copy of “sample_edit” and store it

	 6–13	 Using Files

in a new file called “copied_file” in your current working directory,
enter the following command:

%  cp /domain_examples/getting_started/sample_edit copied_file <RETURN>

If you enter the ls command at the UNIX Shell prompt, you’ll see
“copied_file” listed in the contents of your working directory.

Printing a File
In order to print a hard–copy of a file, your network must support
one or more printing devices, and it must be capable of executing a
process called a Print Server. When the Print Server is running, you
can print a file using a print command or a special print menu.
Remember, however, that you must have read permission on the file
that you are attempting to print.

Using a Print Command
To produce a printout of a file via command, enter the lpr (bsd4.2)
or lp (sys5) command and the pathname of the file to be printed.
For example, the following bsd4.2 version of the command prints
three copies of the file “copied_file” on an available line printer (the
default printer is site dependent):

%  lpr –#3 copied_file <RETURN>

To print the file on a specific line printer, use the following command
(where “spin” is the designated name of the printer to be used):

%  lpr –P spin copied_file <RETURN>

The lpr command copies the file to a temporary file. This file resides
on the node that controls your printer. Because lpr has submitted a
copy of your file to the printer, you can edit the original version
without changing the copy that is printing.

Ask your system administrator for the names of the printing devices
at your installation.

Using Files	 6–14

Using a Print Menu
Instead of using a command to print your file, you may choose to use
a print menu (see Figure 6–2). This menu lets you specify various
arguments and options by typing information and making selections
from the menu.

Figure 6–2. The Print Menu

To display the print menu on your screen, enter the /com/prfd (print
file dialog) command as follows:

%  /com/prfd <RETURN>

The /com/prfd command displays the print menu in a special
window at the top of the Shell process transcript pad. An arrow
cursor appears in the upper left corner of the menu.

NOTE:	 The arrow does not automatically become the typing cursor.
You must press <F1> on your keyboard or the left key on
your mouse in order for this action to take place.

To use the print menu to print the file “copied_file”, move the arrow
cursor to the space following the File to print: prompt. A small
typing cursor appears on the line. Type “copied_file” as follows:

To print “copied_file” on another printer, move the arrow cursor to
the space following the Printer: prompt.	The typing cursor appears

	 6–15	 Using Files

on the line. Type the name of the printer you want to use. For
example, to specify printer “spin”, enter the following:

Note that the default number of copies (one) appears on the screen
automatically. You may, of course, move the cursor to the copies
window and change the number if you desire more than one copy of
the file to be queued for printing.

When you’re satisfied with the information that you’ve supplied on
the print menu, move the arrow cursor to the box labeled Print.
Press either the space bar or function key <F1>. If you’re using a
mouse, press the left mouse key. The following messages appear on
the transcript pad:

Queuing data file “copied_file”.
//node/owner/copied_file queued for printing.
File “/sys/print/queue/spin.owner.copied_file” queued for printing.

This message means that the /com/prfd command has copied
“copied_file” to a temporary file that has been named
“spin.owner.copied_file”. This file resides on the node that controls
your printer in the directory “/sys/print/queue”.

The print menu remains on your screen, allowing you to print
additional files. When you’re ready to exit from the print menu,
move the arrow cursor to the box labeled “Quit”. Press the space
bar, <F1>, or if you’re using a mouse, the left mouse key. The menu
disappears from your screen, and the cursor reappears next to the
Shell prompt.

Deleting a File
To delete files from directories, use the rm (remove file) command,
and the name of the file to be removed, at the UNIX Shell prompt.
For example:

%  rm copied_file <RETURN>

deletes the file “copied_file” from your current working directory.
To delete a file anywhere else in the network, supply a pathname.

Using Files	 6–16

You must, however, have write permission to the file before you can
delete it.

Summary
In this chapter, you learned how to create and read files. You also
learned about various editors that are available under the
DOMAIN/IX system. Furthermore, you became acquainted with
methods for printing, copying, and deleting files using UNIX Shell
commands. Chapter 7 contains more specific information about
UNIX Shells.

	 7–1	 Using a UNIX Shell

Chapter	 7

Using a UNIX Shell

As you saw earlier, DOMAIN/IX software lets you perform
traditional computing activities, such as printing files and compiling
and running programs. When you enter a command at a UNIX Shell
prompt, the Shell invokes the utility program to perform the task you
request. For example, when you entered the rm (remove file)
command at the end of the last chapter, the UNIX Shell invoked the
utility program that removes files.

The two UNIX Shells that we discuss in this chapter are the C Shell
(supported by the bsd4.2 version) and the Bourne Shell (supported
by both sys5 and bsd4.2 versions). In particular, we describe:

•	 How a Shell command line is structured

•	 How the Shell interprets command lines and locates
commands

Using a UNIX Shell	 7–2

•	 How to use symbols that have special meaning to the Shell

•	 How to create Shell scripts

Command Format
The simplest UNIX Shell command consists of a command name.
For example:

%  ls <RETURN>

The ls (list directory) command lists the contents of your current
working directory.

Using Command Arguments
Most Shell commands accept one or more command arguments to
specify the object (file, directory, or link) upon which the command
will act. For example:

%  ls your_directory <RETURN>

In this example, “your_directory” is the argument. The ls command
lists the contents of “your_directory”. You must use one or more
spaces to separate a command from its arguments, and to separate
arguments from each other.

Using Command Options
In addition to command arguments, most Shell commands accept
command options to modify the action of commands. They generally
appear before command arguments. Most options are preceded by a
hyphen, although this is not always the case. It is best to check the
DOMAIN/IX Command Reference, or the on–line manual page
(using the man command), for specific usage instructions in the case
of each option. If an option is preceded by a hyphen, do not include
any space between the hyphen and the option. For example:

%  ls –l <RETURN>

	 7–3	 Using a UNIX Shell

The ls command, used with the –1 option displays the contents of the
current working directory in “long” format, supplying mode, number
of links, owner, size in bytes, and time of last modification for each
file in the directory.

Entering Multiple Commands on a Line
To enter more than one command on a single line, separate the
commands with a semicolon (;).	For example:

%  ls;date <RETURN>

This command lists the contents of the current working directory,
then displays the date. Here’s another example that you’ll probably
use often:

%  cd;ls <RETURN>

The cd (change directory) command changes the working directory
to your home directory, and then the ls command lists its contents.

Command Line Processing
Most commands are files. When you press <RETURN> to enter one
of these commands, the Shell searches for a file with the same name
as the command you specified. If the Shell finds such a file, it loads
and executes it as a program. Next, the Shell passes any arguments
and options on your command line to the program with the same
name as the command. After it executes the program, the Shell
returns its prompt, which means that the Shell is ready for your next
command. For example, when you enter the following command:

%  ls –l my_directory <RETURN>

the Shell searches for a file named “ls”. The Shell then loads and
executes the program that it finds in the file “ls”. Next, the Shell
passes the option and the argument to the program. After it executes
the program and displays the contents of “my_directory” in a single
column, the Shell redisplays a prompt on its input pad. You can
then enter another Shell command.

Using a UNIX Shell	 7–4

Command Search Paths
When you enter a command that is the name of a file, the UNIX Shell
takes a particular route (referred to as a command search path) in
determining which directories to search for the command file. You
can display the current search path of the UNIX Shell you’re using
by typing the echo command, with “$PATH” as its argument. For
example:

%  echo $PATH <RETURN>

NOTE:	 “PATH” is a Shell variable. By convention, Shell variables
appear entirely in uppercase.

By default, when you have the bsd4.2 version of DOMAIN/IX
software installed on your node, the following three directory names
are displayed when you enter the above command:

:/usr/ucb:/bin:/usr/bin

NOTE:	 The sys5 version of DOMAIN/IX software uses
“:/bin:/usr/bin” as its default search path.

But let’s take a closer look at what the command search path is really
composed of. The sequence of directory names separated by colons
that you see above is stored in the Shell variable called “PATH”.
Assuming, as always, the bsd4.2 version, the Shell looks for
command files in this order:

1.	 Your current working directory (.)

2.	 The primary system command directory (/usr/ucb)

3.	 A secondary system command directory (/bin)

4.	 A third, less frequently used, system command directory
(/usr/bin).

As soon as the Shell finds a filename that matches the command you
specify, it attempts to execute the program. As we mentioned
earlier, don’t create text files with the same name as commands
because the Shell attempts to execute the text file as if it were a
command file.

	 7–5	 Using a UNIX Shell

To include other directories in your search path, use the setenv
command from the C Shell prompt. For example, if you wanted to
add the /com directory to the end of your default search path, you
would type the following:

%  setenv PATH :/usr/ucb:/bin:/usr/bin:/com <RETURN>

This saves you the trouble of always remembering to type a “/com”
in front of the /com enhancements that you have learned thus far.

NOTE:	 In the Bourne Shell (both sys5 and bsd4.2 versions), you
can change the current search path by resetting the
“PATH” Shell variable, augmenting the previous value with
a new one. For example, typing “PATH=$PATH:/com” at
the Bourne Shell prompt adds the /com directory to the end
of your default search path.

Then, if you retyped the echo command with “$PATH” as its
argument, you would see the following results:

PATH=:/bin:/usr/bin:/com

NOTE:	 In the C Shell, the “PATH” environment variable is
predefined to a particular default when DOMAIN/IX
software is installed on your node. You can still use the echo
command with “$PATH” as its argument to find what the
default setting is. To change your search path, we
recommend that you eventually create a ”.cshrc” file in
your home directory, with the desired arguments to
“PATH” specified via the set command built into the C
Shell. Include the following command line in your ”.cshrc”
file, if you want to add the /com directory to your search
path:

set PATH=(. /usr/ucb /bin /usr/bin /com)

Using Wildcards
Wildcards are special characters that you can use to represent one or
more pathnames. For example, the following command line contains
the * wildcard:

%  ls *.bak <RETURN>

Using a UNIX Shell	 7–6

The * wildcard matches every file that ends in “.bak” (backup
versions of text files). Therefore, this command line lists all the files
that end in ”.bak” in your current working directory.

The next example lists all the objects (files, directories, and links) in
“//node7” beginning with one of the letters a through z.

%  ls [a–z]* //node7 <RETURN>

The [...] wildcard, where the ellipses (...) represents specified
characters, matches any of the enclosed characters. A pair of
characters separated by a minus sign (–) matches any character
lexically between the pair.

Most Shell commands that accept pathnames as arguments also
accept wildcards. Wildcards are relatively easy to use, but there are
more of them than are described here. Furthermore, the wildcards
accepted by UNIX Shells sometimes have a different meaning in an
AEGIS Shell – or their meanings differ between the Bourne Shell
and the C Shell.

For this reason, do not use any wildcarding until you are sure that
you understand fully how they operate within the particular type of
UNIX Shell you are using. “Using the C Shell” and “An
Introduction to the Bourne Shell” in the DOMAIN/IX User’s Guide
give the most complete information about wildcards.

Redirecting Input and Output
In the previous examples in this book, the Shell process read the
commands you entered (input) from its input pad, and it wrote the
responses to your commands (output) on its transcript pad. The
next two sections explain a few examples of special characters that
you can use to redirect input and output (I/O). For complete
information about the special characters that redirect I/O, see “An
Introduction to the Bourne Shell” and “Using the C Shell” in the
DOMAIN/IX User’s Guide.

	 7–7	 Using a UNIX Shell

Writing Output to a File
Some Shell commands write output to the transcript pad. For
example, the following cat (catenate) command line with only a
filename as an argument, directs its output to the transcript pad:

%  cat myfile <RETURN>

Here, cat catenates “myfile” and displays the output on the
transcript pad.

To direct the output to a file instead of the transcript pad, use the
greater than (>) symbol and another filename. For example:

%  cat myfile > myfile.out <RETURN>

The cat command first reads “myfile” and writes the catenated text
to “myfile.out”. The Shell creates the output file (“myfile.out”) if it
does not already exist. Now that the formatted text is stored in a file,
you can read it or prepare it for printing.

Reading Input from a File
To instruct a Shell command to read input from a file instead of the
input pad, use the less than (<) symbol and a filename. One example
might be the wc (word count) command, which counts the number
of characters (including blank spaces), words (character strings
delimited by spaces, tabs, and new lines), and lines contained in the
standard input. In this section, you’ll learn how to instruct wc to
read input from a file.

Before entering the wc command, create a text file to use as input to
the command.	 To do so, follow these steps:

1.	 Press <EDIT> to create the file.

2.	 In the DM input window, enter the filename as follows:

edit file:  sample_file <RETURN>

Using a UNIX Shell	 7–8

3.	 When the DM creates the edit window and pad on your
screen, type the following lines of text:

wc counts the number of words,
characters, and lines contained in
the standard input (by default) or in
a file that you specify.

4.	 Press <EXIT> to close the edit window and pad.

Now instruct wc to get its input from the file “sample_file”. Type the
following command:

%  wc <sample_file <RETURN>

This tells wc to supply a count of the lines, words, and characters
respectively contained in “sample_file”. The “<sample_file”
notation instructs wc to perform this count on the text in the file
“sample_file”. Then, wc writes its output to the transcript pad, like
this:

4 23 129

The output represents lines (4), words (23), and characters (129)
found in “sample_file”.

Using Pipes and Filters
A pipe connects the standard output of one Shell command to the
standard input of another. For example, suppose you wanted to find
out how many words two of your files contain, when combined. You
could do accomplish these tasks by typing the following two
command lines (where “sample_file” is being created for the
purposes of making a copy of the combined data in which a word
count can be performed):

%  cat file1 file2 > sample_file	 <RETURN>

%  wc –l < sample_file	 <RETURN>

As you can see, this method is rather cumbersome. And, you
probably don’t really want to keep a copy of the union of the two
files; all you really needed was a report on the total number of words

	 7–9	 Using a UNIX Shell

contained in the two files combined. If you use a pipeline, you can
do both tasks in one simple operation, as shown below:

%  cat file1 file2 | wc <RETURN>

In this case, the cat (concatenation) command creates an output file
only on the standard output and not in your working directory. The
wc (word count) command uses this temporary data as standard
input to produce the results on your display.

There is no limit on the size of a pipeline that you can create. You
should, however, remember that pipes are interpreted by the Shell as
being unidirectional.

Although you can’t create a pipeline that has several programs
feeding into one final program, you can build a type of “T–joint” in a
pipe by using the tee command in your pipeline. This command tells
the Shell to transcribe the standard input to the standard output and
make copies in the named files.

The tee command is particularly useful for saving data being
transmitted through the pipeline, data that is essentially written over
in the process. For example, if you wanted to check a file called
“test” for spelling errors, create a file named “test.errors” that
contains the list of mispelled words found in “test”, and create a
separate file named “test.num” that provides only a count of the
total number of mispellings in “test”, you would type the following
command line:

%  spell test | tee test.errors | wc –w > test.num <RETURN>

Since tee copies its input to the specified file(s) and to its output, the
intermediate output from the execution of spell is saved in
“test.errors”, a copy of this data passes through the wc (word count)
program, and the result of the execution of wc is written onto a new
file named “test.num”.

A filter reads its input, performs some specified operation on it, and
then prints the result as output. An example of one useful filter is
grep, which searches its input for lines that contain a string you have
specified. For instance, the command line

%  ls | grep bak <RETURN>

prints all lines from the output of ls that contain the string “bak”.

Using a UNIX Shell	 7–10

Creating Shell Scripts
A Shell script is a file that contains a list of Shell commands. If you
find yourself repeating a sequence of commands over and over again,
create a Shell script containing the commands. You can then execute
the entire command sequence with a single command.

To create a script, use <EDIT> to create the file, type the Shell
commands, one per line, then press <EXIT> to close the file. To
execute the script, type the script’s filename in the process input
window next to the UNIX Shell prompt. Be sure to read the
remainder of this section for important details about Shell script
execution.

Let’s try an example. Suppose you wanted to change your current
directory to your home directory, and then get a long listing of its
contents (using the –l option with ls). You could accomplish these
tasks by entering these Shell commands, one after another:

%  cd <RETURN>

%  ls –l <RETURN>

The cd (change directory) command sets the working directory to
your home directory. The ls command displays the name of each
object in your home directory. The –l option displays each object’s
mode, owner, size in bytes, etc.

If you create a Shell script containing the cd and ls –l command lines,
you can execute both commands by simply entering the filename of
the script. To create a script called “dir”, follow these steps:

1.	 Get into your home directory by executing a cd at the UNIX
Shell prompt.

2.	 Create a personal directory in which your Shell scripts can
exist. Typically, your built–in scripts should reside in a “bin”
subdirectory of your home directory. You already have a
“/bin” subdirectory in your node entry directory, and the
UNIX Shell uses this subdirectory in its command search
path. Your personal “bin” should also be added to your
search path so that the Shell looks there for commands as
well. (See Chapter 5 for more information about adding

	 7–11	 Using a UNIX Shell

	 directories to your command search path.) Get into your
“bin” subdirectory by typing

%  cd bin	 <RETURN>

NOTE:	 Now, if you type a pwd (print working directory)
command at the UNIX Shell prompt, you should
see your node name, followed by your user ID, and
finally, the name “bin”.

3.	 Press <EDIT> to create the file that will contain your script.
In the DM input window, enter the filename as follows:

edit file:  dir <RETURN>

4.	 When the DM creates the edit window and pad, type the
Shell commands, one per line, like this:

cd my_dir <RETURN>

ls –l <RETURN>

NOTE:	 By default, UNIX Shell scripts are interpreted by
the Bourne Shell when no specific Shell is named
in the first (comment) line of the script file.
Therefore, if you have the bsd4.2 version of the
DOMAIN/IX system installed on your node, and
wish to use the C Shell in your script, you must
specify it by typing the following on the first line of
the file:

#! /bin/csh

5.	 Press <EXIT> to close the edit window and pad.

Before you can execute your Shell script, you must make sure that
the file is executable. By default, the files that you create with the
DM editor are executable. As you remember, however, the owner of
such files will be listed as “root”. Therefore, you must use chmod on
these files to make yourself owner of them. (See Chapter 5 for more
information on this.)

Using a UNIX Shell	 7–12

Using the script that you just created, you can now execute the cd
and ls command lines by typing the following:

%  dir <RETURN>

Remember that, once you have included your personal “/bin” in
your home directory, you can execute your Shell scripts from
anywhere on the naming tree. You can use your Shell scripts in a
variety of ways (e.g., as parts of a pipeline). When you’re ready to
create more sophisticated scripts, read “Using the C Shell” or “An
Introduction to the Bourne Shell” in the DOMAIN/IX User’s Guide.

Summary
In this chapter, you learned more about UNIX Shells. You read
about how a Shell processes your commands and how it locates the
command files you request. We also introduced you to some of the
more powerful features of UNIX Shells, namely wildcards, symbols
that redirect input and output, pipes and filters, and Shell scripts.

Now that you’re familiar with the UNIX Shells, read the
DOMAIN/IX User’s Guide to learn how to perform specific tasks
using either the C Shell or the Bourne Shell. See the DOMAIN/IX
Command Reference for a brief explanation of how each Shell
works, or use man to view information on the C Shell (csh) or the
Bourne Shell (sh).

	 8–1	 Using Both DOMAIN/IX Versions

Chapter	 8

Using Both
DOMAIN/IX Versions

The two versions of the UNIX operating system that DOMAIN/IX
software supports provide a variety of similar (though seldom
identical) system services through kernel and library functions. While
a particular function may exist in both the sys5 and the bsd4.2
versions, the semantics of the function, and sometimes its arguments,
may be subtly different.

UNIX programs traditionally assume that the runtime environment
will be UNIX software of a certain lineage (AT&T or Berkeley) or
even a specific version (AT&T System V or 4.2 BSD). DOMAIN/IX
uses this information to create the foundation for its multiple–version
support.

Even though you have both versions available to you at your site, you
must select the one for which your operating environment (e.g., the

Using Both DOMAIN/IX Versions	 8–2

commands that are available with the particular version) will be
targeted. The actual version selector is an environment variable
called “SYSTYPE”. We recommend that, as a beginning user of
DOMAIN/IX, you ask your system administrator to set this variable
for you.

Name Space Support
Since its formation, the UNIX file system has contained a few system
directories with rather well–known names. These directories are:
/usr, /bin, /etc, /dev, and /tmp. Table 8–1 provides a description of
the basic contents of these directories (and some of their important
subdirectories).

	 8–3	 Using Both DOMAIN/IX Versions

Table 8–1. DOMAIN/IX System Directories

Name Object Type Description

/bsd4.2

/bin

/etc

/dev
/tmp

/usr

directory

symbolic link

symbolic link

normal link
normal link

symbolic link

top–level directory containing
/usr, /bin, and /etc

basic programs in executable
form (“binaries”)
administrative commands
and database files used
system–wide
device files
temporary working space
for files created during
program execution
user file system with

special directories for:
system administration data
(/usr/adm)
user–oriented utilities
(/usr/bin)
spelling dictionary (/usr/dict)
tutorial documents (/usr/doc)
standard C include files that
describe the standard system
configuration for C pro-
grams (/usr/include)
object libraries, data files,
and auxiliary programs
used by software develop-
ment utilities (/usr/lib)
on–line manual entries (/usr/man)
misc. publication (font) files
(/usr/pub)
editor temporary files
(/usr/preserve)
working directories for
communications programs
(/usr/spool)
binaries of programs
developed at UC–Berkeley
(/usr/ucb)

Using Both DOMAIN/IX Versions	 8–4

The structure and content of each of the directories differs within the
two UNIX versions supported by the DOMAIN/IX system. To
support identically named versions of these directories on the same
DOMAIN file system, we have introduced symbolic links. Unlike
regular links, symbolic links allow a portion of the link text to be
replaced by an environment variable.

Symbolic links placed in your node’s root directory during the
installation procedure allow programs to use either the sys5 or the
bsd4.2 versions of the “/bin”, “/etc”, and “/usr” directories (the
other two directories mentioned above are common to both
versions). Although the links to “/bin”,” /usr”, and “/etc” are
normally created by the installation script, you may at some point
need to create or re–create such links yourself using the ln –s (create
symbolic link) command. For example, to create a
SYSTYPE–dependent link for “/bin”, use the following:

%  ln –s /bin ’$(systype)/bin’

NOTE:	 The single quotes around the link text are required.
Otherwise, the dollar sign will be interpreted as a Shell
metacharacter.

The SYSTYPE environment variable determines the selection of
UNIX commands, libraries, spool directories, and the like. (Table
8–1 shows the top–level DOMAIN/IX directory organization.)

Environment Switching
The DOMAIN/IX system allows you to execute a sys5 program from
a bsd4.2 UNIX Shell (or vice versa) without any knowledge of the
UNIX version for which the program was targeted. When you
invoke a program that is stamped with a specific version of the UNIX
operating system (i.e., either sys5 or bsd4.2), the SYSTYPE
environment variable for the process in which the program is running
is set to that version. The program “/etc/systype” displays the
version stamp.

A Shell’s SYSTYPE value defines the version of system directories
that are searched when a command name is given. Thus, it defines
the version of the commands that you execute. To simplify the
execution of a particular version of a UNIX command from a
differing version of a UNIX Shell, you can use the ver (display or set

	 8–5	 Using Both DOMAIN/IX Versions

version) command. The ver command comes in handy, for
example, when you want to invoke a System V command from a
BSD4.2 Bourne Shell, or even a C Shell. You can use ver in the
following three ways:

•	 To display the current value of SYSTYPE. For example,
if your SYSTYPE is set to “bsd4.2”, typing the command
without arguments, produces these results:

%  ver

bsd4.2

•	 To change the current value of SYSTYPE to another value,
thereby changing the version of subsequently executed
commands. For instance, if your SYSTYPE is set to bsd4.2
and you want to set it to sys5, type the following:

%  ver sys5

	 Now, you can verify that the version was indeed changed by
invoking the ver command without any arguments, as in the
first example above.

•	 To execute a specific version (sys5 or bsd4.2) of a command
without changing the current setting of SYSTYPE. For
example, to execute the System V version of the diff
command (which compares two large files and finds differing
lines) from a BSD4.2 C Shell without changing the Shell to a
System V Bourne Shell, type the following:

%  ver sys5 diff file1 file2

	 In this example, “file1” and “file2” are existing files in your
current working directory that you wish to compare.

Summary
In this chapter, you learned about support for multiple versions of
DOMAIN/IX software. Now that you’re familiar with the
DOMAIN/IX user environment and the functions of UNIX Shells
and the Display Manager software, continue with the DOMAIN/IX
User’s Guide to learn specific information about these features.

	 A–1	 Keyboard Control Summary

Appendix	 A

Keyboard Control
Summary

The following summarizes the functions of the keys described in
this book. We have included information on both the low–profile
keyboard (the one used in all our examples) and the older model 880
keyboard.

Keyboard Control Summary	 A–2

MOVING THE CURSOR

Task Low–Profile
Keyboard

880
Keyboard

Move left one character
Move right one character
Move up one line
Move down one line

Move to start of next line
Move to beginning of line
Move to end of line

Tab right
Tab left

Move to DM input window
Move to next window on
screen

←

→

↑

↓

CTRL/K
⇤

⇥

<TAB>
CTRL/<TAB>

<CMD>

<NEXT WNDW>

←

→

↑

↓

CTRL/K
⇤

⇥

<TAB>
CTRL/<TAB>

<CMD>

<NEXT WNDW>

CREATING AND CONTROLLING A PROCESS

Task Low–Profile
Keyboard

880
Keyboard

Create a new process,
transcript pad, and window
Stop a process, delete
the input window, and
close pads
Suspend a process (bsd4.2
only)
Restart a process after it
has been suspended
(bsd4.2 only)
Save the transcript pad in a
file

<SHELL>

CTRL/D

CTRL/Z

CTRL/J

<CMD> pn pathname

<SHELL>

CTRL/D

CTRL/Z

CTRL/J

<CMD> pn pathname

	 A–3	 Keyboard Control Summary

MOVING A PAD UNDER A WINDOW

Task Low–Profile
Keyboard

880
Keyboard

Move cursor to first character
in pad
Move cursor to last character
in pad

Move pad by pages
Move pad by lines

Move pad by characters

CTRL/T

CTRL/B

↑ ↓

<SHIFT>/ ↑
<SHIFT>/ ↓

← , <SHIFT>/ ←

→ , <SHIFT>/ →

CTRL/T

CTRL/B

↑ ↓

<F2>, <F3>
<F2>, <F3>

←

→

MANAGING WINDOWS

Task Low–Profile
Keyboard

880
Keyboard

Change a window’s size
Move a window
Cancel changing window
size
Cancel moving a window
Close pad and window;
update file
Close pad and window; no
file update
Copy text to process input
window

<GROW>
<MOVE>

CTRL/X
CTRL/X

<EXIT>

<ABORT>

<AGAIN>

CTRL/G
CTRL/W

CTRL/X
CTRL/X

CTRL/Y

CTRL/N

<F8>

Keyboard Control Summary	 A–4

MANAGING THE DISPLAY

Task Low–Profile
Keyboard

880
Keyboard

Request help on DM or
AEGIS commands

Request help on UNIX
commands

Log in
Log out

Place a mark
Respond to DM alarm and
pop window	

<HELP>

See UNIX Shell
command

man

<CMD> user ID
<CMD> lo

<MARK>

<CMD> ap

See UNIX Shell
command

help

See UNIX Shell
command

man

<CMD> user ID
<CMD> lo

<MARK>

<CMD> ap

CREATING A PAD AND WINDOW
TO READ AND EDIT FILES

Task Low–Profile
Keyboard

880
Keyboard

Create edit pad and
window through which to
view it
Create read–only pad and
window

<EDIT>

<READ>

<EDIT>

<READ>

	 A–5	 Keyboard Control Summary

EDITING A PAD

Task Low–Profile
Keyboard

880
Keyboard

Set read/write mode
Set insert/overstrike mode

Insert newline character
Insert new line after
current line
Insert end–of–file mark

Delete character at cursor
Delete character before
cursor
Delete word of text
Delete from cursor to
end of line
Delete entire line

Copy defined range of
text to paste buffer
Cut (delete) defined range
of text and write it to
paste buffer
Paste (write) text in paste
buffer into pad

Search forward for string
Repeat last forward search
Search backward for
string
Repeat last backward
search

Cancel copy, cut, or
search

CTRL/M
<INS>

<RETURN>

<F1>
CTRL/D

<CHAR DEL>

<BACKSPACE>
<F6>

<F7>

<LINE DEL>

<COPY>

<CUT>

<PASTE>

<CMD> /string/
CTRL/R

<CMD> \string\

CTRL/U

CTRL/X

CTRL/M
<INS MODE>

<RETURN>

<F1>
CTRL/D

<CHAR DEL>

<BACKSPACE>
<F6>

<F7>

<LINE DEL>

CTRL/C

CTRL/E

CTRL/O

<CMD> /string/
CTRL/R

<CMD> \string\

CTRL/U

CTRL/X

Keyboard Control Summary	 A–6

EDITING A PAD (continued)

Task Low–Profile
Keyboard

880
Keyboard

Undo previous command

Update edit file without
closing edit pad

Substitute “strlng2” for
all occurrences of “string 1”
in defined range
Substitute “string2” for
first occurrence of
“string 1” in each line of
defined range

<UNDO>

<SAVE>

<CMD> undo

<CMD> pw

	

<CMD> s/string1/string2/

<CMD> so/string1/string2/

	 B–1	 DM Environment

Appendix	 B

DM Environment
Variable Settings

The following describes the DM environment variable settings that
must be present in order for the examples in this book to work.
Some of these variables are preset by the system; others have special
significance to system software or other special attributes. We refer to
environment variables that are defined by the system at log–in time
as “preset”. The subset of these that you cannot delete or modify are
referred to as “privileged”.

We do not recommend that you try to set the values for these
variables yourself. If the examples in this book do not work as we
have shown, please contact your system administrator. Information
in this appendix should help you and your system administrator verify
the accuracy of the settings on your node.

DM Environment	 B–2

Variable Name Description Example

NODETYPE
(privileged)

USER
(privileged)

LOGNAME
(privileged)

PROJECT
(privileged)

ORGANIZATION
(privileged)

NODEID
(privileged)

HOME
(privileged)

TERM
(preset)

TZ
(preset)

Type of node on which
the process is running.

User’s log–in name.	

Same as USER.
	

Project (group) ID under
which the user logged in.

Organization ID under which
the user logged in.

Unique node identifier for the
node on which the process
is running, expressed in hexa-
decimal.

User’s home directory path–	
name, established at log–in.

Device name of the “terminal”
in use.

Timezone string, where the first	
three characters are the standard
timezone name, the middle num-
ber is the difference in hours be-
tween the standard timezone and
UTC, and the last three charac-
ters are the daylight timezone
name.

DN300

bill

bill

systest

devmt

54cd

//node1/bill

apollo_19l

EST5EDT

	 B–3	 DM Environment

Variable Name Description Example

UNIXLOGIN

SYSTYPE

NAMECHARS

PATH

SHELL

Specifies that a UNIX log–in
sequence is to be used in
place of the standard DOMAIN
log–in sequence. (Valid values
are “true” and “false”.)

The UNIX system version in
use.

Specifies a set of characters
to which special semantics are
attached during name transla-
tion.

Command search path
to be followed. Depen-
dent on setting of
SYSTYPE.

Type of Shell to be created
by default. Dependent on
setting of SYSTYPE.

true

bsd4.2

:/bin:/usr/bin:/usr/ucb

/bin/csh

	

	

DM Environment	 B–4

Here is an excerpt from a script used to set up the DM environment
described in this book. Similar lines should appear as a part of the
startup–file that sets up the initial operating environment on your
node. Notice the setup of environment variables previously
mentioned in this index. Also note the setup of the “/etc.rc” script
(the /com/cps command creates a process server, of which “/etc.rc”
is one type).

Select a default UNIX version for the node:
#
env SYSTYPE ’bsd4.2’

Use a UNIX login sequence:
#
env UNIXLOGIN ’true’

Run ‘node_data/etc.rc (a Shell script that usually starts various
UNIX daemons, such ones used for the line printer facility, when
the node is booted):
#
cps /etc/run_rc

	 C–1	 Command Synopsis

Appendix	 C

Command Synopsis

The following is a brief synopsis of some useful commands that the
DOMAIN/IX system provides. In most cases, a standard UNIX
command appears first on a line, followed by an available
DOMAIN/IX extension. The DOMAIN/IX Command Reference and
the DOMAIN/IX Programmer Reference materials explain the UNIX
commands in more detail. The /com extensions are discussed in the
DOMAIN System User’s Guide.

Command Synopsis	 C–2

access control

show default permissions	 umask or
/com/acl (with the –all option)

show current permissions	 ls (when used with –l option), or
/com/acl

change protection	 chmod or /com/edacl

directory control

compare two directories	 diff

delete a directory	 rm (when used with –r option)

list directory contents	 ls

create a directory	 mkdir

move up one directory	 cd

move up two directories	 cd ../..

remove directory (empty)	 rmdir

set working directory	 cd x (where x is the target working
	 directory

set to network root	 cd //

show home directory	 echo $HOME
printenv HOME (bsd4.2 only)

show working directory	 pwd

	 C–3	 Command Synopsis

file control	

concatenate files	 cat

copy a file	 cp

copy std input to std output
and named files	 tee	

create/modify magtape
descriptor files	 /com/edmtdesc

delete a file	 rm

device descriptor file	 mknod

lock a file	 /com/lkob

maintain an archive	 ar

rename a file	 mv

unlock a file	 /com/ulkob

link control	

create a link	 ln

delete a link	 rm

network control	

change group ID	 chgrp

change file ownership	 chown (sys5 only)
/com/edacl

list users logged in	 who (with the –a option)
or /com/lusr

Command Synopsis	 C–4

list your login name	 whoami (bsd4.2 only)
who (with the am i argument)
/com/lusr (with the –me option)

	 D–1	 Error Message Summary

Appendix	 D

Error Message
Summary

The following is a list of common error messages that you may
encounter if you make input mistakes during your DOMAIN/IX
session. Although it is not exhaustive, the list should help you to
understand the meaning of several of the more cryptic responses that
you may get from the programs you run.

Error Message Summary	 D–2

Common Error Messages

Error Message Interpretation

can’t open file

File does not exist, or you
do not have read permis-
sion. If you are sure that
this does not apply, check
to see whether you might
be trying to access it from
the wrong directory.

name : command not found
Command does not exist
within any directories in
your search path.

usage: command file1 file2

Command was not used
properly. Usage, as it
should be, is shown in
message.

file: cannot create

File already exists and you
have no write permission to
it, or the directory that
contains the file does not
allow write permission (i.e.,
you cannot create any new
files within that directory).

file: permission denied See “cannot create” message
(above).

file: text file busy
You are attempting to write
to a file that is already
locked.

	 D–3	 Error Message Summary

Common Error Messages (continued)

Error Message Interpretation

broken pipe

A command within the
pipeline cannot pass the
specified data to the next
command, or it has not
received input from the
previous command.

bad directory Attempted to use a file as
a directory.

can’t access file
File does not exist or you
do not have read permis-
sion.

file: cannot unlink

You have tried to remove
a file for which you have
no permission to do so.
This could also mean that
the directory in which the
file resides has restricted
it from being deleted by
permissions, thus protecting
others.

file: 700 mode

The permission mode of the
file is set so that you cannot
perform the desired function.
The “700” mode (or any
other three–digit number that
appears with this message)
refers to the absolute mode
given as the first argument to
the chmod command. In
this case, 700 mode means
that the file is readable,
writable, and executable
only by its owner.

Glossary–1

Glossary

Access Rights	 These rights list the people who can use each
object in the network, and specify how each
person can use the object. UNIX access
rights consist of read, write, and execute
permissions.

Alarm Window	 The Display Manager alarm window appears
near the bottom of your screen. It displays a
small pair of bells when a process displays a
message in an output window that is hidden
by an overlapping window.

Argument	 See Command Argument.

Background Process	 A non–interactive process that runs immune
to quit and interrupt signals issued from your
node. This allows you to start a task and
then go on to another task while the system
continues with the initial one.

BSD4.2	 The version of the DOMAIN/IX system that
implements 4.2 BSD UNIX from the
University of California at Berkeley.

Command	 An instruction you give a program.

Command Argument	 A command option or the name of the
object upon which the command will act.
Command arguments follow commands on
the same line, although not all commands
require an argument. (Also see Command
Option.)

Command Option	 Information you provide on a command line
to indicate the type of action you want the
command to take. (Also see Default.)

Glossary–2

Command Search	 The route that the Shell takes in searching
Path	 through various directories for command

files. A default search path exists for each
of the DOMAIN/IX versions. You may add
other directories of executable files which
the Shell will then look through on its way to
finding a particular command name.

Control Character	 A special invisible character that controls
some portion of the input and output of the
programs you run on your node. (Also see
Control Key Sequence.)

Control Key 	 A keystroke combination consisting of
Sequence	 <CTRL> followed by another key. These

combinations provide you with a shorthand
method of specifying commands. To enter a
control key sequence, hold <CTRL> down
while you press another key.

Current Directory	 Also known as your working directory, this is
(.)	 the location in the hierarchical naming tree

of the directory that you are working in at
any given time. Entering the UNIX
command pwd prints the name of your
current directory.

Cursor	 The small, blinking box initially displayed in
the screen’s lower left corner. The cursor
marks your current typing position on the
screen and indicates which program (Shell
or DM) receives your commands.

Default	 Most programs give you a choice of one or
more options. If you do not specify an
option, the program automatically assigns
one. This automatic option is called the
default.

Directory	 A special type of object that contains
information about the objects beneath it in
the naming tree. Basically, it is a file that
stores names and links to files.

Glossary–3

Disk	 A thin, record–shaped plate that stores data
on its magnetic surfaces. The system uses
heads (similar to heads in tape recorders) to
read and write data on concentric disk
tracks. The disk spins rapidly, and the
heads can read or write data on any disk
track during one disk revolution.

Diskless Node	 A node that has no disk for storage, and
therefore uses the disk of another node.

Display Manager	 The program that executes commands that
(DM)	 start and stop processes, and commands that

open, close, move, or modify windows and
pads.

DM Function Keys	 Single keys that invoke DM commands.

DOMAIN System	 A high–speed communications network
connecting two or more nodes. Each node
can use the data, programs, and devices of
other network nodes. Each node contains
main memory, and may have its own disk,
or share one with another node.

File	 The basic named unit of data stored on disk.
A file can contain a memo, manual,
program, or picture.

Filter	 A command that reads its input, performs a
user–specified task, and prints the result as
output.

Function Keys	 See DM Function Keys.

Hard Link	 A link that points directly to an object
(file).

Home Directory	 Your initial working directory. Your user
(~)	 account specifies the name of your home

directory.

Initial Working 	 The working directory of the first user
Directory	 process created after you log in.

Glossary–4

Input Window	 The window that displays a program’s
prompt and any commands you type.

Insert Mode	 Insert mode enables you to change text
displayed in windows. You can modify text
by repositioning the cursor and inserting
characters. The rest of the line moves right
as you insert additional characters.

Kernel	 The resident operating system that controls
your node’s resources and assigns them to
active processes.

Link	 A special type of object that points from one
place in the naming tree to another. (Also
see Hard Link and Symbolic Link.)

Logging In	 Initially signing on to the system so that you
can begin to use it. This creates your first
user process.

Main Memory	 The node’s primary storage area. It stores
the instruction that the node is executing, as
well as the data it is manipulating.

Memory	 Any device that can store information.

Metacharacter	 See Shell Metacharacter.

Name	 A character string associated with a file,
directory, or link. A name can include
various alphanumeric characters, but never
a slash (/) or null character. You should also
remember that certain characters have
special meaning to the Shell and must be
escaped if they are used.

Naming Directory	 In addition to its working directory, each
process uses a naming directory. Like the
working directory, the naming directory
points to a certain destination directory.
The system uses your home directory as the
initial naming directory.

Glossary–5

Naming Tree	 A hierarchical tree structure that organizes
network objects.

Network	 Two or more nodes sharing information.

Network Root	 The top directory in the network.
Directory	 Each node contains a copy of the network

root directory.

Node	 A network computer. Each node in the
DOMAIN system can use the data,
programs, and devices of other network
nodes. Each node contains main memory,
and may have its own disk, or share one
with another node.

Node Entry	 A subdirectory of the network root
Directory	 directory. The node entry directory is the

top directory on each node. Diskless nodes
share the node entry directory of their
disked partner node.

Object	 Any file, directory, or link in the network.

Operating System	 The program that supervises the execution
of other programs on your node.

Option	 See Command Option.

Output Window	 The window that displays a process’
response to your command.

Pad	 A temporary, unnamed file that holds the
information you display in a window. A
window can display an entire pad, or show
only part of the pad.

Parent Directory	 The directory one level above your current
(..)	 working directory.

Partner Node	 A node that shares its disk with a diskless
node.

Glossary–6

Password	 The word you enter next to the “Password:”
prompt when you log in. As you type your
password, the system displays periods (.)
instead of the letters in your password.

Pathname	 A series of names separated by slashes that
describe the path that the operating system
must take to get from some starting point in
the network to a destination object.
Pathnames begin with the starting point’s
name, and include every directory name
between the starting point and the
destination object. A pathname ends with
the destination object’s name.

Pipe	 A facility that connects the standard output
of a command with the standard input of
another command.

Print Server	 A process that oversees the printing of files
submitted to the print queue. The print
server need only run from the node
connected to the print device(s).

Process	 A computing environment in which you can
execute programs.

Prompt	 A message or symbol that the system
displays to let you know that it is ready for
your input.

Regular Expression	 A string specifier that can help you find
occurrences of variables, terms, or
expressions in your programs and
documents. Regular expressions are
specified by allowing certain characters
special meaning to the Shell.

Root Directory	 See Network Root Directory.

Glossary–7

Script	 A file that you create that contains one or
more Shell commands. A script allows you
to execute a sequence of commands by
entering a single command (the script
name).

Shell	 A command–line interpreter program used
to invoke operating system utility programs.

Shell Command	 An instruction you give the system to
execute a utility program.

Shell Metacharacter	 Any character that has special meaning to a
Shell. For example, asterisks, question
marks, and ampersands are Shell
metacharacters.

Software	 Programs, such as the Shell and the DM,
that allow you to perform various tasks.

Start–up Script	 A file that sets up the initial operating
environment on your node. This file is also
known as a “boot script”.

Symbolic Link	 A link that points to link text or the
pathname of an object (file). Sometimes
also known as a “soft link”.

System	 The person	 responsible for system
Administrator	 maintenance and security at your site.

Sys5	 The version of the DOMAIN/IX system that
implements UNIX System V, Release 2,
from AT&T Bell Laboratories.

SYSTYPE	 An environment variable that shows the
UNIX system version you are currently
using. Valid SYSTYPES for DOMAIN
nodes are sys5 and bsd4.2.

Super–User	 See System Administrator.

Glossary–8

Transcript Pad	 A transcript pad contains a record of your
interaction with a process. The process
output window provides a view of its
transcript pad.

User Account	 The system administrator defines a user
account for every person authorized to use
the system. Each user account contains the
name the computer uses to identify the
person (user ID), and the person’s
password. User accounts also contain
project and organization names. The system
uses this information to determine who can
use the system, and what resources they can
use.

User ID	 The name the computer uses to identify you.
Your system administrator assigns you your
user ID. You enter your user ID during the
log–in procedure when the system displays
the log–in prompt.

Utilities	 Programs provided with the operating system
to perform frequently required tasks, such as
printing a file or displaying the contents of a
directory.

Wildcards	 Special	characters that you can use to
represent one or more pathnames.

Window	 Openings on the screen through which you
view information stored in the system.
Display management software lets you create
several different windows on the screen.
Each window is a separate computing
environment in which you can execute
programs, edit text, or read text. You can
move the windows anywhere on your screen,
change their size and shape, and overlap or
shuffle them as you might papers on your
desk.

Glossary–9

Window Legend	 The area of a window that displays window
status information. For example, the
window legend of an edit window contains
such information as the pathname of the file
you’re editing, the letter “I” if the window
is in insert mode, and the number of the line
at the top of the window.

Working Directory	 The default directory in which a process
creates or searches for objects.

Index–1

Index

Primary page references are listed first.	The letter f means “and the
following page"; the letters ff mean “and the following pages”.
Symbols are listed at the beginning of the index.

Symbols

< > (angle brackets) v
*	 (asterisk) 7–5
\	 (backslash)

in pathnames 6–2
in search strings 6–9

..	 (double periods) 5–8f
//	 (double slashes) 5–3, 5–5
>	 (greater than symbol) 7–7
<	 (less than symbol) 7–7
||	 (pipe) 7–8f
/	 (slash)

in pathnames 5–5f, 6–1
in search strings 6–9

A

access rights 5–12f
<ABORT> 4–7, 6–2, 6–4
<AGAIN> 4–10
alarm window 2–6, 4–10
ap command (DM) 4–10
argument, command 7–2
arguments in Shell scripts 7–10
arrow keys 1–6

Index–2

B

<BACKSPACE> 2–2, 3–5f, 6–6
.bak filename suffix 5–12, 6–5
/bin directory 7–4f, 7–10ff, 8–2ff
/bsd4.2 directory 8–3
Bourne Shell process

creating 2–8, 4–8, 3–3
stopping 4–13f
prompt 1–11, 2–5

C

canceling a cut, copy, or search 6–10
case sensitivity 2–7, 3–1, 6–10
cd command (UNIX) 5–7, 7–3, C–2
changing

file permissions 5–12f
window size 4–11ff
your home directory 5–6f
your working directory 5–8

<CHAR DEL> 3–8, 6–6
closing

a read–only pad and window 6–4
an edit window 6–2f

<CMD> 2–5
/com/crucr command (AEGIS) vi
/com directory 3–5, 7–5
/com/help command (AEGIS) vi, 3–7
/com/lusr command (AEGIS) 5–5f
/com/prfd command (AEGIS) 6–14f
command

format 7–2f
line processing 7–3
search path 7–4f, D–2
synopsis C–1

Index–3

commands, AEGIS
/com/acl (list access controls) C–2
/com/crucr (create user change request) vi
/com/edacl (edit access control list) C–2
/com/edmtdesc (create tape descriptor files) C–3
/com/help (AEGIS/DM command help) vi, 3–9
/com/lusr (list user) 5–5f
/com/prfd (print file dialog) 6–14f
/com/ulkob (unlock object) C–2

commands, DM
ap (alarm pop) 4–10
cmdf (command file) 3–5
lo (log out) 2–6
pn (pad name) 4–14
pp (pad page) 4–7

commands, UNIX
cal (print calendar) 4–11
cat (concatenate files) 7–7ff, C–3
cd (change directory) 5–7, 7–3, C–2
chgrp (change group ID) C–3
chown (change file ownership) C–3
chmod (change mode) 5–12f, C–2
cp (copy) 6–12f, C–3
date (print date) 3–7
diff (compare files/directories) 8–5, C–2
echo (echo arguments) C–2
grep (search file for pattern) 7–9
ln (create link) 5–11f, C–3
lp (line printer facility for System V) 6–13
lp (line printer facility for BSD4.2) 6–13
ls (list directory) 5–5, 7–2f, C–2
man (on–line manual help) 3–9
mkdir (create directory) 5–7, C–2
mv (rename a file) C–3
printenv (print environment variables) C–2
pwd (print working directory) 5–7, C–2
rm (remove file) 6–15, C–3
rmdir (remove empty directory) C–2
start_csh (create C Shell) 3–5

Index–4

start_sh (create Bourne Shell) 3–6
tee (pipe fitting) C–3
umask (show default permissions) C–2
ver (show version of DOMAIN/IX in use) 8–5
wc (word count) 7–7f
who (list users logged in) C–4
whoami (list your log–in name) C–4

Command: prompt 2–5, 3–2
control key sequences 4–14, 3–5
control keys, window 4–8ff
<COPY> 3–3, 6–9
copying

a file 6–12f
text

in a file 6–9
to the process input window 4–10f

correcting errors 3–8f, 6–6f
cp command (DM) 3–5f
cp command (UNIX) 6–12f, C–2
creating

a Shell process 3–4ff
a text file 6–2, 6–12
Shell scripts 7–10f

C Shell process
creating 2–5, 3–5
prompt 1–11, 2–5
stopping 4–13f
suspending 4–15

<CTRL> 3–4
CTRL/B 4–6, A–3
CTRL/C A–5
CTRL/D 3–6, 4–14, A–2
CTRL/E A–5
CTRL/G A–3
CTRL/I 3–6
CTRL/J 3–6, 4–15, A–2
CTRL/M 6–4, A–5
CTRL/N A–3
CTRL/O A–5

Index–5

CTRL/R 6–10, A–5
CTRL/T 4–6, A–3
CTRL/U 6–10, A–5
CTRL/W A–3
CTRL/X 4–12, 6–10, A–5
CTRL/Y A–3
CTRL/Z 3–6, 4–15, A–2
current directory see working directory
cursor 1–6, 6–15
<CUT> 6–8f
cutting text 6–7f

D

date command (UNIX) 3–7
defining a range of text 6–7
deleting

a file 6–15
characters 3–6f
lines 3–6f

destination object 5–3
/dev directory 8–2f
directories 5–1

/bin 7–4f, 7–10ff, 8–2ff
/bsd4.2 8–3
/com 3–5, 7–5
current see working directories
/dev 8–2f
/etc 8–2ff
/tmp 8–2f
/usr 7–4f, 8–2ff
home 5–6f
network root 5–3ff
node entry 5–5f
parent 5–8f
working 5–7f

discarding changes in an edit file 6–8
diskless node 1–1

Index–6

displaying
a file 4–3f, 6–3
hidden text 4–2, 4–6f
hidden windows 4–8f

Display Manager 1–11
alarm window 2–6, 4–10
commands 3–2
function keys 3–2f
input window 2–5
output window 2–6
prompt 2–4f, 3–2
windows 2–5f

displays
after logging in 2–3ff
landscape 1–5
portrait 1–5

DM see Display Manager
DM environment

modifying 2–2f, 3–4ff, 8–1, 8–4f, B–1ff
dollar sign ($) prompt 1–11, 2–4
DOMAIN distributed file system 1–2
DOMAIN System Command Reference vi
DOMAIN System User’s Guide v
DOMAIN/IX Command Reference v, 3–6, 7
DOMAIN/IX Programmer’s Reference v
DOMAIN/IX User’s Guide v, 7–6
DOMAIN/IX program administration l–10f

E

<EDIT> 2–7f, 6–2, 6–4
edit window and pad 6–2f
editing a file 5–12, 6–4f, 6–12
end–of–file mark (EOF) 3–6, 4–14
ending the session 2–6
enlarging a window 4–11ff
entering

AEGIS commands 3–7
DM commands 3–2ff

Index–7

multiple commands on a line 7–3
UNIX commands 3–7

environment variables 2–1, 7–5, 8–2, 8–4f, B–1ff
error messages D–1ff
errors, correcting 3–8f, 6–6f
/etc directory 8–2ff
executable files 7–11
<EXIT> 4–14

F

filename conventions 6–1f
file permissions 5–12f, D–2f
files 5–1

accessing 5–12f
closing 6–2, 6–4, 6–9
creating 6–2f
editing 5–12, 6–4f, 6–12
executing 7–11
locating see pathname
naming 6–1f
opening 6–2f
reading 6–3f

filters 7–9
format see command format
function keys 3–2f

G

<GROW> 4–11f

H

hard links 5–10ff
help

with AEGIS and DM commands 3–7
with UNIX commands 3–6f

home directory 5–6f

Index–8

I

I (insert mode indicator) 2–5
input

pads 4–3
windows 2–5

input, redirecting 7–6ff
<INS> 2–5
insert mode 2–5
inserting characters 2–5
inserting a range of text see pasting text

K

keyboard
880 1–3, A–1ff
low–profile 1–3, A–1ff
redefinition of 4–4ff

key definitions 3–4ff
keys

<ABORT> 4–7, 6–2, 6–4
<AGAIN> 4–10
arrow 1–6
<BACKSPACE> 2–2, 3–5f, 6–6
<CHAR DEL> 3–6, 6–6f
<CMD> 2–5
<COPY> 3–3, 6–9
<CTRL> 3–5
<CUT> 6–8f
defining 2–6f
<EDIT> 2–7f, 4–3, 6–2, 6–4
<EXIT> 4–14, 3–7
function 3–2f
<GROW> 1–9, 4–11f
<INS> 2–5, 3–6
<LINE DEL> 3–6, 6–6f
<MARK> 1–9, 6–7, 6–9, 6–11

Index–9

<MOVE> 4–13
<NEXT WNDW> 2–4
<PASTE> 4–11, 6–8f
<POP> 1–10, 4–8f
<READ> 2–7, 4–3, 6–3
<RETURN> 2–1f
scrolling 4–7
<SHELL> 2–7, 3–3
<SHIFT> 4–7, 3–3
<TAB> 2–7f
<UNDO> 6–11f
window control 4–8ff

L

landscape display 1–5
<LINE DEL> 3–6, 6–6f
line printer 6–13f
links 5–2, 5–10ff, 8–3f
link text 5–11
ln command (UNIX) 5–11, C–3
lp command (UNIX) 6–13
lpr command (UNIX) 6–13
lo command (DM) 2–8
log–in prompt 2–2f, 2–8
logging in 2–1ff
logging off 2–8
logout message 4–14
looking inside a window 4–2ff
ls command (UNIX) 5–5, C–2

M

managing windows 4–7ff
<MARK> 6–7, 6–9, 6–11
marking a range of text 6–7
message of the day 2–3
metacharacters see Shell (UNIX) metacharacters
mkdir command (UNIX) 5–7

Index–10

mode, absolute 5–12f; also see chmod command
mode indicators in window legends 2–5
mode, symbolic 5–12f; also see chmod command

mouse l–8ff
pushing and popping windows 1–10
changing window size 1–9
reading a file 1–10

mouse keys 1–9f
<MOVE> 4–13
moving

a pad under a window 4–6f
horizontally 4–7
vertically 4–7

a window 4–13
the cursor l–6ff
to the top and bottom of a pad 4–6f

N

naming tree 5–1
network root directory 5–3, 5–5
<NEXT WNDW> 2–4
node entry directory 5–5f
nodes 1–1

O

objects 5–2
opening a window to a file 6–2
operating system

AEGIS 1–10
UNIX 1–1, 1–10

Operator’s Manual 1–5
options see command options
organization name 2–2, 5–5f
organization of data 5–1ff
output

Index–11

pads see transcript pads
windows 2–5f

output, redirecting 7–6ff
overstriking a command line 3–6

P

pads 4–2ff
edit 4–3f
input 4–3
moving to the top and bottom 4–6f
moving under a window 4–6
output see transcript pads
read–only 4–4f, 6–3f
scrolling 4–7
transcript 4–3

parent directories 5–8f
password 2–2f
paste buffer 6–8
<PASTE> 4–11, 6–8f
pasting text 6–7ff
PATH Shell variable 7–4
pathname 5–3f

symbols 5–9f
pipes 7–8f
pn command (DM) 4–13f
<POP> 4–8f
portrait display 1–5
pp command (DM) 4–7
printing a file 6–13ff

using a line printer command 6–13
using a print menu 6–13ff

Print Server 6–13
process l–10f

creating 4–7f
identification name 2–5
input window 2–5
output pad 4–3
output window 2–5

Index–12

stopping 2–8, 4–13f
suspending 2–8, 4–15
transcript pad 4–3

project identifier 2–2
prompt 1–11

AEGIS or /com Shell ($) 1–11, 3–5
Bourne Shell, BSD4.2 (B$) 1–11
Bourne Shell, System V (#) 1–11
C Shell (%) 1–11, 2–3
DM (Command:) 2–5, 3–2
edit file: 2–7, 6–2f, 6–4f
login: 2–2f, 2–8
password: 2–3
read file: 2–7, 6–3f

pushing or popping windows 1–10, 4–8f

Q

queuing a file for printing see printing a file

R

R in window legend 6–4
range of text, defining 6–7
<READ> 2–7, 4–3, 6–3
read–only window and pad 4–4f, 6–3f
reading

a file 6–3f
input from a file 7–7

redefining your keyboard 4–4ff
redirecting input and output 7–6f
reducing window size 4–11ff
refreshing the screen 3–2
related manuals v
replacing text see substituting text
responding to alarms 4–9f
<RETURN> 2–1f
rm command (UNIX) 6–15
root directory see network root directory

Index–13

rs command (DM) 3–2

S

S (mode indicator) 2–5
saving

editing changes 6–9
a transcript pad 4–14

scripts, Shell 7–10ff
scrolling

a pad 4–7
keys 4–7

search path, command 7–4f
searching for text 6–9f
semicolon (;) 7–3
Shell programs 1–10f
Shell, UNIX

command format 7–2
commands 3–2, 7–1ff
metacharacters 8–4
process, creating 2–7f, 4–7f
process windows 2–5, 4–7f
prompt 1–11, 2–3
scripts 7–10ff

<SHELL> 2–7, 3–3
<SHIFT> 4–7, 3–3
SHIFT/↑ 4–7
SHIFT/↓ 4–7
SHIFT/← 4–7
SHIFT/→ 4–7
shuffling windows 4–8f
soft links see symbolic links
start_csh command (UNIX) 2–7, 4–8
start_sh command (UNIX) 4–8
stopping a process 2–8, 4–13f
substituting

arguments in Shell scripts 7–10ff
text 6–7

super–user see system administrator

Index–14

suspending a process 2–8, 4–15
symbolic links 5–10ff, 8–3f
system administrator 1–5, B–l
SYSTYPE environment variable 8–4f, B–3f

T

<TAB> 2–7f
/tmp directory 8–2f
touchpad 1–7f
transcript pad 4–3

U

<UNDO> 6–11f
undoing previous commands 6–11f
user account 2–2
User Change Request (UCR) vi
user environment 2–2f, 2–6ff, 8–1, 8–4f, B–1ff
user ID 2–2
username 2–2
/usr/bin directory 7–4f, 8–3f
/usr/ucb directory 7–4f
utilities (programs) 1–10, 7–1

V

video display 1–5
viewing

a file 6–3f
hidden text 4–2, 4–6
hidden windows 4–8

W

wildcards 7–5f
window legend 2–5

Index–15

windows 1–3
alarm 2–6, 4–9f
changing the size of 4–11ff
control keys 4–8ff
edit 6–2ff
input 2–5
legend 2–5
moving 4–13
output 2–5 f
popping (pushing) 1–10, 4–8f
position 2–4f
read–only 4–4f, 6–3f

working directory 5–7f
writing output to a file 7–7

Index–16

