
ASSEMBLY LANGUAGE MANUAL

Specifications Subject to Change.

Convergent Technologies, Convergent, CTOS, CT-BUS, IWS,
EWS, and MWS are trademarks of Convergent Technologies.

Copyright © 1980 by Convergent Technologies

	 Contents iii

CONTENTS

Guide to Technical Documentation.............................. vii

 1 Introduction.. 1
Choice Among Convergent Languages......................... 1
Features of the Assembly Language......................... 2
Design of the Instruction Set............................. 2
Arrays.. 3
Object Modules and Linking................................ 3
Segments and Memory References............................ 4
Registers... 5
Addressing.. 5
Procedures.. 7
Macros.. 8
Example... 8
Invoking the Assembler from the Executive................. 8
	 Field Descriptions..................................... 10

 2 Programs and Segments...................................... 13
Segments... 13
	 SEGMENT/ENDS Directives................................ 13
	 Segment Nesting.. 14
ASSUME Directive... 16
Loading Segment Registers................................ 17
Segment Override Prefix.................................. 18
Anonymous References..................................... 19
Memory Reference in String Instructions.................. 20
GROUP Directive.. 21
Procedures... 22
	 PROC/ENDP Directives................................... 22
	 Calling a Procedure.................................... 23
	 Recursive Procedures and Procedure Nesting on
	 the Stack.. 23
	 Returning from a Procedure............................. 25
Location Counter ($) and ORG Directive................... 25
EVEN Directive... 26
Program Linkage (NAME/END, PUBLIC and EXTRN.............. 26
	 END Directive.. 27

 3 Data Definition... 29
Introduction... 29
Constants.. 29
Attributes of Data Items................................. 31
	 SEGMENT.. 31
	 OFFSET... 31
	 TYPE... 31
	 DISTANCE... 31
Variable Definition (DB, DW, DD Directives............... 32
	 Constant Initialization................................ 32
	 Indeterminate Initialization........................... 33
	 Address Initialization (DW and DD Only................. 33
	 String Initialization.................................. 33

iv Assembly Language Manual

	 Enumerated Initialization.............................. 34
	 DUP Initialization..................................... 34
Labels and the LABEL Directive........................... 34
	 LABEL Directive.. 35
	 LABEL with Variables................................... 35
	 LABEL with Code.. 36
	 Label Addressability................................... 36
Records.. 37
	 Initializing Records................................... 38
Structures... 39
	 Default Structure Fields............................... 41
	 Overridable Structure Fields........................... 41
	 Initializing Structures................................ 42

 4 Operands and Expressions.................................. 43
Operands... 43
Immediate Operands....................................... 43
Register Operands.. 44
	 Explicit Register Operands............................. 44
	 Implicit Register Operands............................. 45
	 Segment Registers...................................... 46
	 General Registers...................................... 46
	 Flags.. 46
Memory Operands.. 46
	 Memory Operands to JMP and CALL........................ 46
	 Variables.. 48
		 Simple Variables..................................... 48
		 Indexed Variables.................................... 48
		 Double-Indexed Variables............................. 48
Attribute Operators...................................... 49
	 PTR, the Type Overriding Operator...................... 49
	 Segment Override....................................... 50
	 SHORT.. 50
	 THIS... 51
Value-Returning Operators................................ 51
Record Operators... 53
Operator Precedence in Expressions....................... 53
EQU Directive.. 54
PURGE Directive.. 54

 5 Forward References.. 55

 6 Instruction Format.. 57

 7 Flags.. 59
Flag Registers... 59
Flag Usage... 60
	 Auxiliary Carry Flag (AF).............................. 60
	 Carry Flag (CF).. 60
	 Overflow Flag (OF)..................................... 60
	 Parity Flag (PF)....................................... 60
	 Sign Flag (SF)... 61
	 Zero Flag.. 61

	 Contents v

 8 Macro Assembler... 63
Introduction... 63
LOCAL Declaration.. 63
Conditional Assembly..................................... 64
Repetitive Assembly...................................... 66
Interactive Assembly (IN and OUT)........................ 68
Comments... 68
Match Operation.. 69
Advanced Features.. 69
	 Bracket and Escape..................................... 71
	 MATCH Calling Patterns................................. 72
	 Processing Macro Invocations........................... 72
	 Expanded and Unexpanded Modes.......................... 73
	 Nested Macro Expansion................................. 73

 9 Accessing Standard Services from Assembly Code............. 75
Calling Conventions...................................... 75
Register Usage Conventions............................... 77
Segment and Group Conventions............................ 78
	 Main Program... 78
	 SS and DS When Calling Object Module Procedures........ 78
Interrupts and the Stack................................. 79
Use of Macros.. 79
Virtual Code Segment Management and Assembly Code........ 81
System Programming Notes................................. 83

10 Assembly Control Directives................................ 85
EJECT.. 85
GEN.. 85
NOGEN.. 85
GENONLY.. 85
INCLUDE.. 85
LIST... 85
NOLIST... 85
PAGELENGTH... 85
PAGEWIDTH.. 86
PAGING... 86
NOPAGING... 86
SAVE... 86
RESTORE.. 86
TITLE.. 86
Using a Printer with Assembly Listings................... 86

11 Sample Assembler Modules.................................. 87

Appendix A: Instruction Set................................. A-1
Leg end... A-1
Alternate Mnemonics..................................... A-4

Appendix B: Reserved Words................................... B-1

vi Assembly Language Manual

LIST OF FIGURES

Figure 1-1.	 Analysis of Sample Instruction.................... 6
Figure 1-2.	 Example of Complete Assembly Program.............. 9
Figure 2-1.	 CALL/RET Control Flow............................ 24
Figure 11-1.	 Error Message Module Program..................... 88
Figure 11-2.	 Standalone Main Program.......................... 91
Figure 11-3.	 Convergent-Compatible Main Program............... 92

LIST OF TABLES

Table 2-1.	 String Instruction Mnemonics....................... 20
Table 3-1.	 Constants.. 29
Table 3-2.	 Target Label Addressability........................ 36
Table A-1.	 Effective Address Calculation Time................ A-3
Table A-2. Alternate Mnemonics............................... A-4
Table A-3.	 Instruction Set in Numeric Order of

Instruction Code.................................. A-5
Table A-4. Instruction set in Alphabetic Order of

Instruction Mnemonic............................. A-12

	 Documentation Guide vii

GUIDE TO TECHNICAL DOCUMENTATION

This Manual is one of a series that documents the Convergent™
Family of Information Processing Systems. The series includes:

o	 Technical Summary

o	 Workstation Hardware Manual

o	 Peripherals Hardware Manual

o	 Central Processing Unit

o	 CTOS™ Operating System Manual

o	 Executive Manual

o	 Editor Manual

o	 BASIC Manual

o	 FORTRAN Manual

o	 COBOL Manual

o	 Pascal Manual

o	 Assembly Language Manual

o	 Debugger Manual

o	 Utilities Manual

o	 Data Base Management System Manual

o	 3270 Emulator Manual

o	 System Programmer's Guide

o	 Operator's Guide

This section outlines the contents of these manuals.

The Technical Summary briefly describes the hardware and software
of the Convergent Family of Information Processing Systems. It
summarizes the other manuals in one volume. It can be helpful to
read this overview before reading the other manuals.

The Workstation Hardware Manual describes the mainframe, keyboard,
and video display. It specifies system architecture, printed
circuit boards (motherboard, processor, I/O-memory, video

viii Assembly Language Manual

control, ROM expansion, and RAM expansion), keyboard, video
monitor, Multibus interface, communications interfaces, power
supply, and environmental characteristics of the workstation.

The Peripherals Hardware Manual describes the disk subsystems.
It specifies the disk controller motherboard, controller boards
for the floppy disk and the Winchester disks, power supplies,
disk drives, and environmental characteristics.

The Central Processing Unit describes the main processor, the
8086.	 It specifies the machine architecture, instruction set
and programming at the symbolic instruction level.

The CTOS™ Operating System Manual describes the operating
system. It specifies services for managing processes, messages,
memory, exchanges, tasks, video, disk, keyboard, printer, timer,
communications, and files. In particular, it specifies the
standard file access methods.

The Executive Manual describes the command interpreter, the
program that first interacts with the user when the system is
turned on. It specifies commands for managing files and invoking
other programs such as the Editor and the programming languages.

The Editor Manual describes the text editor.

The BASIC, FORTRAN, COBOL, Pascal, and Assembly Language Manuals
describe the system's programming languages. Each manual
specifies both the language itself and also operating
instructions for that language. For Pascal, the manual is
supplemented by a popular text, Pascal User Manual and Report.

The Debugger Manual describes the Debugger, which is designed for
use at the symbolic instruction level. Together with appropriate
interlistings, it can be used for debugging FORTRAN, Pascal, and
assembly language programs. (BASIC and COBOL, in contrast, are
more conveniently debugged using special facilities described in
their respective manuals.)

The Utilities Manual describes miscellaneous programs such as the
Linker, which links together separately compiled object files,
and the Asynchronous Terminal Emulator.

The Data Base Management System Manual describes the data base
management system. It specifies (1) the data definition
language, which defines the logical structure of data bases and
separately defines their physical organization, (2) the host
language interfaces for accessing data bases from each of the
system's programming languages, and (3) the utilities for
creating, loading, unloading, and reorganizing data bases.

The 3270 Emulator Manual describes the 3270 emulator package.

	 Documentation Guide ix

The System Programmer's Guide addresses the needs of the system
programmer or system manager for detailed information on
operating system structure and system operation. It describes
(1) diagnostics, (2) procedures for customizing the operating
system, and (3) system utilities normally used only by a system
programmer or manager, for example, Initialize Volume, Backup,
and Restore.

The Operator's Guide addresses the needs of the average user for
operating instructions. It describes the workstation switches
and controls, keyboard function, and floppy disk handling.

	 Introduction 1

1 INTRODUCTION

This Manual describes the Convergent assembler and assembly lang-
uage. The Manual is directed towards readers who understand some
assembly language reasonably well

To understand an assembler, it is usually helpful to first under-
stand the machine architecture of the target CPU. If you are not
already familiar with the machine-level architecture of the
Convergent Information Processing System, you can find it useful
to read the Central Processing Unit. That document also contains
a brief discussion of assembly language programming at an elemen-
tary level, and it describes the instruction set in detail. So,
if this Manual is too difficult, try reading the Central
Processing Unit.

Since this Manual is primarily a reference work, we do not
expect you to read it straight through. But if you are not
entirely conversant with Convergent assembly language, you should
initially read the first four sections.

Choice Among Convergent Languages

A programmer working with a Convergent Information Processing
System has many different languages to choose among. The choice
among languages involves several considerations.

o	 Does the program require the unique business features of
COBOL or the scientific features of FORTRAN?

o	 Is an interpreted language (such as BASIC) suitable?

o	 Will the system programming and data structuring facilities
of Convergent Pascal be particularly valuable in the program
to be written?

o	 Should the program be divided into parts to be written in
different languages and combined by the Linker?

If the program (or program part) requires direct access to
processor registers and flags, then assembly language is the best
choice. To the extent that memory utilization and object code
efficiency are more important than development speed and program-
mer productivity, assembly language is a better tool than Pascal
or FORTRAN.

It is rarely the case that an entire application system ought to
be written in assembly language. The programmer should determine
those parts in which direct access to machine features, efficien-
cy, and memory utilization are overriding concerns, and implement
those parts in assembly language, while writing the remainder of
the application in an appropriate high-level language.

2 Assembly Language Manual

Features of the Assembly Language

The Convergent assembly language features a powerful instruction
set, sophisticated code and data structuring mechanisms, strong
typing (the ability to check that the use of data is consistent
with its declaration), a conditional assembly facility, and a
macro language with extensive string manipulation capabilities.

Design of the Instruction Set

A complete description of the instruction set is given in Appen-
dix A and in the Central Processing Unit.

This assembly language differs from most other assembly lan-
guages, which usually have one instruction mnemonic for each
operation code (opcode). In this assembly language, a particular
instruction mnemonic can be assembled into any of several
opcodes; the type of opcode depends on the type of operand.

This assembly language is a "strongly typed" language because
mixed operand types are not permitted in the same operation (as,
for example, moving a declared byte to a word register). You
cannot inadvertently move a word to a byte destination, thereby
overwriting an adjacent byte, nor can you move a byte to a word
destination, thereby leaving meaningless data in an adjacent
byte. However, if you need to override the typing mechanism,
there is a special operation, called PTR, which allows you to do
this. See Section 4.

The assembly language makes it possible to convey much informa-
tion in a single, easy-to-code instruction. Consider this
instruction:

SUB [BP][SI].field4, CH

The contents of the 8-bit register CH are subtracted from a
memory operand; registers BP and SI are used to calculate the
address of the memory operand; and the identifier field4 and the
dot operator (.) are used to designate symbolically an offset
within the structure pointed to by BP and SI.

The register BP points within the run-time stack and is used, as
is the case in this example, when the operand is on the stack.
(The segment register for the stack segment is SS, so the 16-bit
contents of SS are automatically used together with BP in addres-
sing the memory operand.)

The 16-bit contents of register SI are the offset of the data
from the top of the stack. That is, the contents of BP and SI
are added in the effective address calculation.

In this context, the dot operator (.) refers to a structure.
(See Section 3 for a description of structure definitions.) The

	 Introduction 3

identifier that follows, field4, identifies a structure field.
Its value gives the relative distance, in bytes, from the begin-
ning of the structure to field4. (Offset values for each field
of the structure relative to the beginning of the structure are
generated by the assembler. In this way the structure can
be used as a pattern of relative offset values, a "storage
template.")

This instruction combines the contents of the stack segment reg-
ister SS, the end of stack register BP, the index register SI,
and the offset of field4, to form an absolute machine address.
The contents of the 8-bit register CH are subtracted from the
byte thus addressed. This instruction includes opcode, base
register, index register, structure displacement and relative
offset, type information, direction (register to memory), and
source register. The instruction assembles into only three
bytes.

Arrays

Arrays of bytes, words, doublewords, structures, and records
(defined below) can be defined and initialized with, respec-
tively, the DB, DW, DD, structure-name, and record-name direc-
tives, as shown here:

rgb	 DB 50 DUP(66)	 ;Allocate 50 bytes, named rgb,
;initialize each to 66.

rgw	 DW 100 DUP(0)	 ;Allocate 100 words, named rgw,
;initialize each to 0.

rgdd	 DD 20 DUP(?)	 ;Allocate 20 doublewords, named
;rgdd, don't initialize them.

When you refer to array elements, be aware that the origin of an
array is 0. This means that the first byte of the array rgb is
rgb[0], not rgb[1]. Its nth byte is rgb[n-1]. Also, be aware
that indexes are the number of bytes from the start of the array,
regardless of whether the array elements are bytes, words, or
doublewords.

Object Modules and Linking

An object module can contain any (or all) of the following: code,
constants, variable data. The Linker (see the Utilities Manual)
arranges the contents of a set of object modules into a memory
image, typically with all code together, all constants together,
and all variable data together. (This arrangement makes optimal
use of the addressing structures of the 8086.) Although the
Linker produces such arrangements automatically, the programmer
will occasionally want to exercise explicit control. The con-
cepts and facilities used to arrange memory are explained in
Section 2.

4 Assembly Language Manual

Segments and Memory References

At assembly-time, you can define as many segments as you wish, as
long as each assembly module has least one segment. (You can
omit segment definition statements, in which case the default
segment is assigned the name ??SEG by the assembler.) Each inst-
ruction of the program and each item of data must lie within a
segment. Code and data may be mixed in the same segment, but
this is generally not done because such a segment cannot be link-
ed with object segments produced by Pascal or FORTRAN.

Here are examples of segments:

o	 global data segment,

o	 local data segment,

o	 stack segment, and

o	 main program segment (code).

A hardware segment in memory contains up to 64K bytes. It starts
at an address divisible by 16, called a paragraph boundary. A
paragraph number that is used to address the beginning of a hard-
ware segment is a segment base address.

A segment defined by the programmer is a logical segment. It
does not necessarily start at a paragraph boundary, so logical
segments need not correspond to hardware segments.

The paragraph numbers at which segments begin are contained, at
run-time, within the four 16-bit segment registers (CS, DS, ES,
and SS). At any time, there are four "current" segments. CS
always defines the current code segment. DS usually defines the
current data segment. SS always defines the current stack seg-
ment. ES can define an auxiliary data segment.

The memory address calculations done by the processor have two
components: a segment base address and an offset. The segment
base address must be in one of the four segment registers (CS,
DS ES, or SS).

When a program gets a data item from memory, the hardware com-
bines the 16-bit offset and the 16-bit segment base address as
follows:

20-bit physical address = 16*(segment base address) + offset

For example, if a program is assembled at offset 2400h within the
data segment, and if segment register DS is loaded with the value
3E00h, then the physical address of the data is:

16*3E00h + 2400h = 40400h

	 Introduction 5

The programmer is generally not concerned with this physical
address.

Registers

The registers are:

o	 16-bit segment (CS, DS, SS, ES),

o	 16-bit general (AX, BX, CX, DX,	SP, BP,	 SI, DI),

o	 8-bit general (AH, AL, BH, BL, CH, CL,	DH, DL),

o	 Base and index 16-bit (BX, BP, SI, DI), and

o	 1-bit flag	(AF, CF, DF, IF, OF, PF, SF, TF, ZF).

Segment registers contain segment base addresses and must be
appropriately initialized at run-time. (If assembly language is
used only to implement subroutines for a main program written in
a high-level language, this initialization is automatic.)

Each of the 16-bit general, 8-bit general, and base and index
registers can be used in arithmetic and logical operations. We
frequently call AX "the accumulator," but the processor actually
has eight 16-bit accumulators (AX, BX, CX, DX, SP, BP, SI, DI)
and eight 8-bit accumulators (AH, AL, BH, BL, CH, CL, DH, DL).
Each 8-bit accumulator is the high-order or low-order byte of AX,
BX, CX, or DX

Addressing

Operands can be addressed in several different ways with various
combinations of base registers (BX and BP), index registers (SI
and DI), displacement (adding an 8- or 16-bit value to a base or
index register or to both), and direct offset (16-bit addresses
used without the base or index register).

A two-operand instruction has a source operand, and a destination
operand, as in:

MOV destination, source

The source operand can be an immediate value (a constant that is
part of the instruction itself, such as the "7" in MOV CX, 7), a
register, or a memory reference. If the source is an immediate
value, then the destination operand can be either a register or a
memory reference.

6 Assembly Language Manual

	 Introduction 7

Source and destination operands cannot both be memory references.

A memory reference is direct when a data item is addressed with-
out the use of a register, as in:

MUL prod, DX	 ;prod is addressed toy 16-bit direct
;offset.

MOV CL, jones.bar	 ;Offset of jones plus bar is 16-bit direct
;offset.

A reference is indirect when a register is specified, as in:

MUL prod[BX], DX	 ;Destination address is base register plus
;16-bit displacement.

MOV CX, [BP][SI]	 ;Source address is sum of base register
;and index register.

See Figure 1-1 for an analysis of a sample instruction.

Procedures

The Convergent assembly language formalizes the concept of a
callable procedure by providing explicit directives to identify
the beginning and end of a procedure. Whereas other assembly
languages start a procedure with a label and end it with a return
instruction, the Convergent assembly language defines a procedure
as a block of code and data delimited by PROC and ENDP state-
ments. Thus the extent of a procedure is apparent. Here is an
example:

WriteFile PROC
 .
 .
 .
 RET
 .
 .
 .
 RET
WriteFile ENDP

Procedures can be nested but must not overlap:

8 Assembly Language Manual

WriteFile PROC
 .
 .
 .
 RET
 WriteLine PROC
 .
 .
 .
 RET
 .
 .
 .
 WriteLine ENDP
 .
 .
 .
 RET
WriteFile ENDP

Macros

The macro capability of the assembler is used to define abbrevi-
ations for arbitrary text strings, including constants, expres-
sions, operands, directives, sequences of instructions, comments,
etc. These abbreviations can take parameters: they are string
functions that are evaluated during assembly.

Fields of instruction can be parameters of macros. Macro calls
can be nested. Macro definitions can be saved in a file. By
including such a "macro library," the programmer can customize
the assembler to include frequently used expressions, instruction
sequences, and data definitions. The macro facility also
provides interactive assembly by means of a macro-time console
I/O facility.

Example

See Figure 1-2 for an example of a complete assembly program.

Invoking the Assembler from the Executive

Invoke the assembler with the Executive's assemble command. The
following form appears:

Assemble
 Source files
 [Errors only?]
 [GenOnly, NoGen, or Gen]
 [Object file]
 [List file]
 [Error file]
 [List on pass 1?]

	 Introduction 9

F
i
g
u
r
e

1
-
2
.

E
x
a
m
p
l
e

o
f

a

c
o
m
p
l
e
t
e

A
s
s
e
m
b
l
y

p
r
o
g
r
a
m
.

10 Assembly Language Manual

You need to know how to fill in a form. This is described in
"Filling in a Form" in the Executive Manual.

Field Descriptions

Source files. Fill in the "Source files" field with a list of
the names of the source files to be assembled. It is the only
required field. If several files are specified, the result is
logically like assembling the single file that is the concat-
enation of all the source files. (In a list of names of source
files, separate each name by a space. Do not use commas.)

As an example, suppose the program is contained in Main.Asm and
depends on a set of assembly-time parameters. You might maintain
two source fragments to define the parameters, one for debugging,
and one for production. Then "Source files" would be either:

ParamsDegbugging.Asm Main.Asm

or:

ParamsProduction.Asm Main.Asm

[Errors only?]. Fill in the "[Errors only?] field with "Yes" if
you want a listing only of lines with errors. The listing
normally contains source and object code for all source lines.
Assembly produces an object file and a list file. The names of
the object and list files are specified as described below. The
default for "[Errors only?]" is "No", that is, a full listing.

[GenOnly, NoGen, or Gen]. Fill in the "[GenOnly, NoGen, or Gen]"
field to specify how the results of macro expansion are listed.
This setting can also be made in the source with the assembly
control directives $GENONLY, $NOGEN, and $GEN. In GenOnly mode
the results of macro expansion are listed. In NoGen mode, the
listing contains the unexpanded macro invocations. In Gen mode,
the listing contains invocations and full expansions, as well as
intermediate stages of expansion. This last mode is most useful
in debugging complex macros. Note that these controls affect
only the content of the listing: the result of full expansions is
always assembled to produce the object code. The default for
"[GenOnly, NoGen, or Gen]" is GenOnly.

[Object file]. Fill in the "[Object file]" field to specify to
which object file to write the object code that results from the
assembly. The default is the last source file. That is, if you
do not specify an object, a default object file is chosen as
follows: treating the last source name as a character string,
strip off any final suffix beginning with the character period
(.), and add the characters ".Obj". The result is the name of
the file. For example, if the last source file is:

	 Introduction 11

[Dev]<Jones>Main

then the default object file is:

[Dev]<Jones>Main.Obj

If the last source file is:

Prog.Asm

then the default object file is:

Prog.Obj

[List File]. A listing of the assembly is written to the speci-
fied list file. The default is the last source file. That is,
if no explicit listing file is specified, a file name is derived
from the last source file. With the examples given above, the
list files would be named, respectively:

[Dev]<Jones>Main.lst

and:

Prog.lst

[Error file]. Fill in the "[Error file]" field with the name of
the file to receive the "errors only" listing if you wish to
create both a full listing and a listing of just the errors. The
default is to create no such listing.

[List on pass 1?]. Fill in the "[List on pass 1?]" field with
"Yes" to diagnose certain errors in macros. Listings are
normally generated only during the second assembly pass.
However, some programming errors involving macros prevent the
assembly process from ever reaching its second pass. To diagnose
such errors, specify "[List on pass 1?]" as "Yes". Listings are
then generated during both assembly passes. The default is "No".

	 Programs and Segments 13

2 PROGRAMS AND SEGMENTS

Segments

SEGMENT/ENDS Directives

Each of the instructions and variables of a program is within
some segment. Segments can be named explicitly using the SEGMENT
directive, but if no name is specified for a segment, the
assembler assigns the name ??SEG. The SEGMENT directive also
controls the alignment, combination, and contiguity of seg-
ments. Its format is:

[segname] SEGMENT [align-type] [combine-type] ['classname']
 .
 .
 .
[segname] ENDS

The optional fields must be in the order given. The segment is
located on a memory boundary specified by [align-type], as
follows:

1.	 PARA (the default)--the segment begins on a paragraph
boundary, an address with the least significant hexadecimal
digit of 0.

2.	 BYTE--the segment can begin anywhere.

3.	 WORD--the segment begins on a word boundary, i.e., an even
address.

4.	 PAGE--the segment begins on an address divisible by 256.

Segments can be combined with other segments by the Linker as
specified by [combine-type] . Segment combination permits segment
elements from different assemblies to be overlaid or concatenated
by the Linker. Such segment elements must have the same segname,
classname, and an appropriate combine-type, as follows:

1.	 Not combinable (the default).

2.	 PUBLIC--when linked, this segment is concatenated (made adja-
cent) to others of the same name. The Linker controls the
order of concatenation during linkage, according to your
specifications.

3.	 AT expression--the segment is located at the 16-bit segment
base address evaluated from the given expression. The
expression argument is interpreted as a paragraph number.
For example, if you wish the segment to begin at paragraph
3223 (absolute memory address 32230h), specify AT 3223h. You
can use any valid expression that evaluates to a constant and

14 Assembly Language Manual

	 has no forward references. An absolute segment is permitted
to establish a template for memory to be accessed at run-
time; no assembly-time data or code is automatically loaded
into an absolute segment.

4.	 STACK--the elements are overlaid such that the final bytes of
each element are juxtaposed to yield a combined segment whose
length is the sum of the lengths of the elements. Stack
segments with the name STACK are a special case. When stack
segments are combined, they are overlaid but their lengths
are added together. When the Linker has combined all stack
segments, it forces the total length of the aggregate stack
segment to a multiple of 16 bytes. Compilers construct stack
segments automatically. However, if your entire program is
written in assembly language, you have to define an explicit
stack segment. There are special rules regarding the use of
the stack that must be observed for calls to standard object
module procedures. See Section 9, "Accessing Standard
Services from Assembly Code" below.

5.	 COMMON--the elements are overlaid such that the initial bytes
of each element are juxtaposed to yield a combined segment
whose length is the largest of the lengths of the elements.

The optional classname can be used to affect the ordering of
segments in the memory image constructed by the Linker. See the
Utilities Manual for details.

Segment Nesting

You can code a portion of one segment, start and end another, and
then continue with the coding of the first. However, there is
only lexical, not physical nesting, since the combination rules
given above are always followed.

Lexically nested segments must end with an ENDS directive before
the enclosing SEGMENT directive is closed with its ENDS
directive.

The fundamental units of relocation and linkage are segment
elements, linker segments, class names, and groups.

An object module is a sequence of segment elements. Each segment
element has a segment name. An object module might consist of
segment elements whose names are B, C, and D.

The Linker combines all segment elements with the same segment
name from all object modules into a single entity called a linker
segment. A linker segment forms a contiguous block of memory in
the Fun-time memory image of the task. For example, you might
use the Linker to link these two object modules:

	 Programs and Segments 15

Object Module 1
 containing segment elements B, C, D

Object Module 2
 containing segment elements C, D, E

Linkage produces these four linker segments:

Linker Segment B consisting of element B1
Linker Segment C consisting of elements C1, C2
Linker Segment D consisting of elements D1, D2
Linker Segment E consisting of element E2

(In each of these cases, xi denotes the segment element x in
module i.)

The ordering of the various linker segments is determined by
class names. (A class name is an arbitrary symbol used to desi-
gnate a class.) All the linker segments with a common class name
and segment name go together in memory. For example, if B1, D1,
and E2 have class names Red, while C1 has class name Blue, then
the ordering of linker segments in memory is:

B, D, E, C

If you look inside the linker segments, you see that the segment
elements are arranged in this order:

B1, D1, D2, E2, C1, C2

(If two segment elements have different class names, then they
are considered unrelated for purposes of these algorithms, even
though they have the same segment name.)

As you see from this, segment names and class names together
determine the ordering of segment elements in the final memory
image.

The next step for the Linker is to establish how hardware segment
registers address these segment elements at run-time.

A group is a named collection of linker segments that is addres-
sed at run-time with a common hardware segment register. To make
the addressing work, all the bytes within a group must be within
64K of each other.

Several linker segments can be combined into a group. For
example, if B and C were combined into a group, then a single
hardware segment register could be used to address segment
elements B1, C1, and C2.

Segment, class, and group names can be assigned explicitly in
assembler modules using appropriate assembler directives. Most

16 Assembly Language Manual

compiled languages assign these names automatically. (See the
individual language manuals for details.)

ASSUME Directive

The ASSUME directive declares how the instructions and data spec-
ified during assembly are to be addressed from the segment base
registers during execution. The programmer must explicitly con-
trol the values in segment registers at run-time. Use of the
ASSUME directive permits the assembler to verify that data and
instructions will be addressable at run-time.

The ASSUME directive can be written either as:

ASSUME seg-reg:seg-name [, ...]

or:

ASSUME NOTHING

Here seg-reg is one of the segment registers.

Seg-name is one of these:

1.	 A segment name, as:

	 ASSUME CS:codeSeg, DS:dataSeg

2.	 A GROUP name that has been defined earlier, as:

	 ASSUME DS:DGroup, CS:CGroup

3.	 The expression SEG variable-name or SEG label-name, as:

	 ASSUME CS:SEG Main, DS:SEG Table

4.	 The keyword NOTHING, as:

	 ASSUME ES:NOTHING

A particular seg-reg:seg-name pair remains in force until another
ASSUME assigns a different segment (or NOTHING) to the given seg-
reg. To ASSUME NOTHING means to cancel any ASSUME in effect for
the indicated registers. A reference to a variable whose segment
is ASSUMEd automatically generates the proper object instruction;
a reference to a variable whose segment is not ASSUMEd must have an
explicit segment specification. (See the "Segment Override Prefix"
below.)

Here is an example:

	 Programs and Segments 17

Tables SEGMENT
 xTab DW 100 DUP(10)	 ;100-word array,
	 ;initially 10’s.
 yTab DW 500 DUP(20)	 ;500-word array
	 ;initially 20's.
Tables ENDS

ZSeg SEGMENT
 zTab DW 800 DUP(30)	 ;800-word array,
	 ;initially 30’s.
ZSeg ENDS

Sum SEGMENT

 ASSUME CS:Sum,DS:Tables,ES:NOTHING	 ;Sum addressable through
	 ;CS and Tables through
	 ;DS. No assumption
	 ;about ES.
 Start: MOV BX, xTab 	 ;xTab addressable by DS:
	 ;defined in Tables.
 ADD BX, yTab 	 ;yTab addressable by DS:
	 ;defined in Tables.
 MOV AX, SEG zTab	 ;Now AX is the proper
	 ;segment base address to
	 ;address references to
	 ;zTab.
 MOV ES, AX	 ;ES now holds the
	 ;segment base address
	 ;for ZSeg.
 MOV ES:zTab, 35	 ;zTab must be addressed
	 ;with explicit segment
	 ;override--the
	 ;assembler doesn’t know
	 ;what segment register
	 ;to use automatically.

Sum ENDS

In this example, the ASSUME directive:

1. Tells the assembler to use CS to address the instructions in
the segment Sum. (This fragment of program does not load
CS. CS must previously have been set to point to the segment
Sum. For example, CS is often initialized by a long jump or
long call.)

2.	 Tells the assembler to look at DS for the symbolic references
to xTab and yTab.

Loading Segment Registers

The CS register is loaded by a long jump (JMP), a long call
(CALL), an interrupt (INT n or external interrupt), or by a
hardware RESET.

18 Assembly Language Manual

The instruction INT n loads the instruction pointer (IP) with the
16-bit value stored at location 4*n of physical memory, and loads
CS with the 16-bit value stored at physical memory address 4*n+2.

A hardware RESET loads CS with 0FFFFh and IP with 0.

Here is an example of defining the stack and loading the stack
segment register, SS:

Stack SEGMENT STACK
 DW 1000 DUP(0)	 ;1000-words of
	 ;stack.
StackStart LABEL WORD	 ;Stack expands
	 ;toward low memory.
Stack ENDS

StackSetup SEGMENT
 ASSUME CS:StackSetup
 MOV BX, Stack
 MOV SS, BX
 MOV SP, OFFSET StackStart	 ;start = end
	 ;initially
StackSetup ENDS

This example illustrates an important point: each of the two
register pairs SS/SP and CS/IP must be loaded together. The
hardware has special provision to assist in this: loading a
segment register by a POP or MOV instruction causes execution of
the very next instruction to be protected against all inter-
rupts. That is why the very next instruction, after the load of
the stack base register, SS, must load the stack offset register,
SP.

CS and its associated offset IP are loaded only by special
instructions and never by normal data transfers. SS and its
associated offset SP are loaded by normal data transfers but must
be loaded in two successive instructions.

Segment Override Prefix

If there is no ASSUME directive for a reference to a named variable,
then the appropriate segment reference can be inserted explicitly
as a segment override prefix coding. This is the format:

seg-reg:

Here seg-reg is CS, DS, ES, or SS, as in:

DS:xyz

This construct does not require an ASSUME directive for the vari-
able reference, but its scope is limited to the instruction in
which it occurs.

	 Programs and Segments 19

Thus, the following two program fragments are correct and
equivalent:

Hohum SEGMENT
ASSUME CS:Hohum, DS:Pond
 MOV AX, Frog
 ADD AL, Toad
 MOV Cicada, AX Hohum ENDS

Hohum SEGMENT
 ASSUME CS:Hohum
 MOV AX, DS:Frog
 ADD AL, DS:Toad
 MOV DS:Cicada, AX
Hohum ENDS

where Pond would be defined by:

Pond SEGMENT
 Frog DW 100 DUP (0)	 ;100 words 0’s
 Toad DB 500 DUP (0)	 ;500 bytes 0's
 Cicada DW 800 DUP (0) 	 ;800 words 0's
Pond ENDS

Anonymous References

Memory references that do not include a variable name are called
anonymous references. These are examples:

[BX]
[BP]

Hardware defaults determine the segment registers for these
anonymous references, unless there is an explicit segment prefix
operator. These are the hardware defaults:

Addressing Default

[BX]
[BX][DI]
[BX][SI]

[BP]
[BP][DI]
[BP][SI]

[DI]
[SI]

DS
DS
DS
SS
SS
SS
DS
DS

The exceptions to these defaults are:

1.	 PUSH, POP, CALL, RET, INT, and IRET always use SS and this
default cannot be overridden.

20 Assembly Language Manual

2.	 String instructions on operands pointed to by DI always use
ES and this default cannot be overridden.

Be particularly careful that an anonymous reference is to the
correct segment: unless there is a segment prefix override, the
hardware default is applied- For example;

ADD BX, [BP+5] is the same as ADD AX, SS:[BP+5]
MOV [BX+4], CX is the same as MOV DS:[BX+4], CX
SUB [BX+SI], CX is the same as SUB DS: [BX+SI], CX
AND [BP+DI], DX is the same as AND SS:[BP+DI], DX
MOV BX, [SI].one is the same as MOV BX, DS:[SI].one
AND [DI], CX is the same as AND DS:[DI], CX

The following examples require explicit overrides since they
differ from the default usage:

MOV CS:[BX+2], AX
XOR SS:[BX+SI], CX
AND DS:[BP+DI], CX
MOV BX, CS:[DI].one
AND ES:[SI+4], DX

Memory Reference in String Instructions

The mnemonics of the string instructions are shown in Table 2-1.
These include those that can be coded with operands (MOVS, etc.) and
those that can be coded without operands (MOVSB, MOVSW, etc.).

Each string instruction has type-specific forms (e.g., LODSB,
LODSW) and a generic form (e.g., LODS). The assembled machine
instruction is always type-specific. If you code the generic form,
you must provide arguments that serve only to declare the type and
addressability of the arguments.

Table 2-1. String Instruction Mnemonics.

Mnemonic
For Byte
Operands
Move
Compare
Load AL/AX
Store from AL/AX
Compare to AL/AX

Mnemonic
For Word
Operands
MOVSB
CMPSB
LODSB
STOSB
SCASB

Mnemonic
For Symbolic
Operands
MOVSW
CMPSW
LODSW
STOSW
SCASW

Operands*
MOVS
CMPS
LODS
STOS
SCAS

*The assembler checks the addressability of symbolic operands.
The opcode generated is determined by the type (BYTE or WORD)
of the operands.

			

	 Programs and Segments 21

A string instruction must be preceded by a load of the offset of
the source string into SI, and a load of the offset of the desti-
nation string into DI.

The string operation mnemonic may be preceded by a "repeat
prefix" (REP, REPZ, REPE, REPNE, or REPNZ), as in REPZ SCASB.
This specifies that the string operation is to be repeated the
number of times contained in CX.

String operations without operands (MOVSB, MOVSW, etc.) use the
hardware defaults, which are SI offset from DS, and DI
offset from ES. Thus:

MOVSB

is equivalent to:

MOVS ES:BYTE PTR[DI],[SI]

If the hardware defaults are not used, both segment and type
overriding are required for anonymous references, as:

MOVS ES:BYTE PTR[DI], SS:[SI]

See Section 4 below for a discussion of PTR.

String instructions can not use [BX] or [BP] addressing.

For details of string instructions and their use with a repeat
prefix, see the Central Processing Unit, page 65. In particular,
note that repeat and segment override should not be used together
if interrupts are enabled.

GROUP Directive

The GROUP directive specifies that certain segments lie within
the same 64K bytes of memory. Here is the format:

name GROUP segname [, ...]

Here name is a unique identifier used in referring to the
group. segname can be the name field of a SEGMENT directive, an
expression of the form SEG variable-name, or an expression of the
form SEG label-name. (See "Value-Returning Operators" in Section
4 for a definition of the SEG operator.) [, ...] is an optional
list of segnames. Each segname in the list is preceded by a
comma.

This directive defines a group consisting of the specified seg-
ments. The group-name can be used much like a segname, except
that a group-name must not appear in another GROUP statement as a
segname.)

Here are three important uses of the GROUP directive:

22 Assembly Language Manual

1.	 Use it as an immediate value, loaded first into a general
register, and then into a segment register, as in:

	 MOV CX,DGroup
 MOV ES,CX

	 The Linker computes the base value as the lowest segment in the
group.

2.	 Use it an ASSUME statement, to indicate that the segment
register addresses all segments of the group, as in:

	 ASSUME CS:CGroup

3.	 Use it as an operand prefix, to specify the use of the group
base value or offset (instead of the default segment base value
or offset), as in

	 MOV CX,OFFSET DGroup:xTab

(See "Value-Returning Operators" in Section 4 for additional
information about OFFSET.)

It is not known during assembly whether all segments named in a
GROUP directive will fit into 64K; the Linker checks and issues a
message if they do not fit. Note that the GROUP directive is
declarative only, not imperative: it asserts that segments fit in
64K, but does not alter segment ordering to make this happen. An
example is:

DGroup GROUP dSeg, sSeg

An associated ASSUME directive that might be used with this group
is:

ASSUME CS:code1, DS:DGroup, SS:DGroup

You can not use forward references to GROUPS.

A single segment register can be used to address all the segments
in a group. This should be done carefully, however, because
offsets in instructions and data are relative to the base of the
group and not a particular segment.

Procedures

PROC/ENDP Directives

Procedures can be implemented using the PROC and ENDP direc-
tives.	Although procedures can be executed by in-line "fall-
through" of control, or jumped to, the standard and most useful
method of invocation is the CALL.

Here is the format of the PROC/ENDP directives:

	 Programs and Segments 23

name PROC [NEAR | FAR]
 .
 .
 .
 RET
 .
 .
 .
name ENDP

name is specified as type NEAR or FAR, and defaults to NEAR.

If the procedure is to be called by instructions assembled under
the same ASSUME CS value, then the procedure should be NEAR. A
RET (return) instruction in a NEAR procedure pops a single word
of offset from the stack, returning to a location in the same
segment.

If the procedure is to be called by instructions assembled under
another ASSUME CS value, then the procedure should be FAR. A RET
in a FAR procedure pops two words, new segment base as well as
offset, and thus can return to a different segment.

Calling a Procedure

The CALL instruction assembles into one of two forms, depending on
whether the destination procedure is NEAR or FAR.

When a NEAR procedure is called, the instruction pointer (IP, the
address of the next sequential instruction) is pushed onto the
stack, and control transfers to the first instruction in the
procedure.

When a FAR procedure is called, first the content of the CS reg-
ister is pushed onto the stack, then the IP is pushed onto the
stack, and control transfers to the first instruction of the
procedure.

Multiple entry points to a procedure are permitted. All entry
points to a procedure should be declared as NEAR or FAR, depen-
ding on whether the procedure is NEAR or FAR.

All returns from a procedure are assembled according to the
procedure type (NEAR or FAR).

See Figure 2-1 for the procedure CALL/RET control flow.

Recursive Procedures and Procedure Nesting on the Stack

When procedures call other procedures, the rules are the same for
declaration, calling, and returning.

24 Assembly Language Manual

	 Programs and Segments 25

A recursive procedure is one which calls itself, or one which
calls another procedure which then calls the first and so
forth. Here are two points to note about recursive procedures.

1.	 A recursive procedure must be reentrant. This means that it
must put local variables on the stack and refer to them with
[BP] addressing modes

2.	 A recursive procedure must remove local variables from the
stack before returning, by appropriate manipulation of SP.

The number of calls that can be nested (the "nesting limit") is
delimited by the size of the stack segment. Two words on the
stack are taken up by FAR calls, and one word by NEAR calls. Of
course, parameters passed on the stack and any local variables
stored on the stack take additional space.

Returning from a Procedure

The RET instruction returns from a procedure. It reloads IP from
the stack if the procedure is NEAR; it reloads both IP and SP
from the stack if the procedure is FAR. IRET is used to return
from an interrupt handler and to restore flags.

A procedure can contain more than one RET or IRET instruction,
and the instruction does not necessarily come last in the
procedure.

Location Counter ($) and ORG Directive

The assembly-time counterpart of the instruction pointer is the
location counter. The value contained in the location counter is
symbolically represented by the dollar sign ($). The value is
the offset from the current segment at which the next instruction
or data item will be assembled. This value is initialized to 0
for each segment. If a segment is ended by an ENDS directive,
and then reopened by a SEGMENT directive, then the location coun-
ter resumes the value it had at the ENDS.

The ORG directive is used to set the location counter to a
nonnegative number. Here is the format:

ORG expression

The expression is evaluated modulo 65536 and must not contain any
forward references. The expression can contain $ (the current
value of the location counter), as in:

ORG OFFSET $+1000

which moves the location counter forward 1000 bytes.

An ORG directive may not have a label.

26 Assembly Language Manual

The use of the location counter and ORG are related to the use of
the THIS directive, which is discussed in "Attribute Operators"
in Section 4.

EVEN Directive

It is sometimes necessary to ensure that an item of code or data
is aligned on a word boundary. For example, a disk sector buffer
for use by the Operating System must be word aligned. The
assembler implements the EVEN directive by inserting before the
code or data, where necessary, a 1-byte NOP (no operation)
instruction (90h). Here is an example:

 EVEN
Buffer DW 256 DUP(0)

The EVEN directive can be used only in a segment whose alignment
type, as specified in the SEGMENT directive, is WORD, PARA, or
PAGE. It cannot be used in a segment whose alignment type is
BYTE.

Program Linkage (NAME/END, PUBLIC, and EXTRN)

The Linker combines several different assembly modules into a
single load module for execution. For more about the Linker, see
the Utilities Manual.

Three program linkage directives can be used by the assembly module
to identify symbolic references between modules. None of these
three linkage directives can be labeled. They are:

o	 NAME, which assigns a name to the object module generated by
the assembly. For example:

	 NAME SortRoutines

	 If there is no explicit NAME directive, the module name is
derived from the source file name. For example, the source
file [Volname]<Dirname>Sort.Asm has the default module name
Sort.

o	 PUBLIC, which specifies those symbols defined within the
assembly module whose attributes are made available to other
modules at linkage. For example:

	 PUBLIC SortExtended, Merge

	 If	a symbol is declared PUBLIC in a module, the module must
contain a definition of the symbol.

o	 EXTRN, which specifies symbols that are defined as PUBLIC in
other modules and referred to in the current module. Here is
the format of the EXTRN directive:

	 Programs and Segments 27

	 EXTRN name.type [, ...]

	 In this format, name is the symbol defined PUBLIC elsewhere
and type must be consistent with the declaration of name in
its defining module. type is one of:

o	 BYTE, WORD, DWORD, structure name, or record name (for
variables),

o	 NEAR or FAR (for labels or procedures), or

o	 ABS (for pure numbers; the implicit SIZE is WORD).

If you know the name of the segment in which an external symbol
is declared as PUBLIC, place the corresponding EXTRN directive
inside a set of SEGMENT/ENDS directives that use this segment
name. You may then access the external symbol in the same way as
if the uses were in the same module as the definition.

If you do not know the name of the segment in which an external
symbol is declared as PUBLIC, place the corresponding EXTRN
directive at the top of the module outside all SEGMENT/ENDS
pairs. To address an external symbol declared in this way, you
must do two things:

1.	 Use the SEG operator to load the 16-bit segment part into a
segment register. (See "Value-Returning Operators" in
Section 4 for a description of the SEG operator.) Here is an
example:

	 MOV AX, SEG Var ;Load segment base
 MOV ES, AX ;value into AX, and thence to ES.

2.	 Refer to the variable under control of a corresponding ASSUME
(such as ASSUME ES:SEG var) or using a segment override
prefix.

END Directive

The end of the source program is identified by the END direc-
tive. This terminates assembly and has the format:

END [expression]

The expression should be included only in your main program and
must be NEAR or FAR and specifies the starting execution address
of the program. Here is an example:

END Initialize

	 Data Definition 29

3 DATA DEFINITION

Introduction

The names of data items, segments, procedures, and so on, are
called identifiers. An identifier is a combination of letters,
digits, and the special characters question mark (?), at sign
(@), and underscore (_). An identifier may not begin with a
digit.

Three basic kinds of data items are accepted by the assembler.

1. Constants are names associated with pure numbers--values with
no attributes. Here is an example

	 Seven EQU 7 ;Seven represents the constant 7.

	 While a value is defined for Seven, no location or intended
use is indicated. This constant can be assembled as a byte
(eight bits), a word (two bytes), or a doubleword (four
bytes).

2.	 Variables are identifiers for data items, forming the
operands of MOV, ADD, AND, MUL, and so on. Variables are
defined as residing at a certain OFFSET within a specific
SEGMENT. They are declared to reserve a fixed memory-cell
TYPE, which is a byte, a word, a doubleword, or the number of
bytes specified in a structure definition. Here is an
example:

	 Prune DW 8 ;Declare Prune a WORD of initial value 0008H.

3.	 Labels are identifiers for executable code, forming the
operands of CALL, JMP, and the conditional jumps. They are
defined as residing at a certain OFFSET within a specific
SEGMENT. The label can be declared to have a DISTANCE
attribute of NEAR if it is referred to only from within the
segment in which it is defined. A label is usually intro-
duced by writing:

	 label:instruction

	 which yields a NEAR label. See also PROC (under "Procedures"
in Section 2) and LABEL under "Labels and the LABEL
Directive" below, which can introduce NEAR or FAR labels.

Constants

There are five types of constants: binary, octal, decimal, hexa-
decimal, and string. Table 3-1 specifies their syntax.

30 Assembly Language Manual

Table 3-1. Constants.

Constant Type
Binary
(Base 2)
Octal
(Base 8)
Decima1
(Base 10)
Hexadecimal
(Base 16)
STRING

Rules For Formation

Sequence of 0's and
1’s plus letter B.

Sequence of digits
0 through 7 plus
either letter 0 or
letter Q.

Sequence of digits
0 through 9, plus
optional letter D.

Sequence of digits
0 through 9 and/or
letters A through
F plus letter h.
(If the first digit
is a letter, it must
be preceded by 0.)

Any character
string within
single quotes.
(More than two
characters only
with DB.)

Examples

10B
11001011B

76540
7777Q
77777Q

9903
9903D

77h
1Fh
0CEACh
0DFh

'A', 'B'
'ABC
'Rowrff'
'UP.URZ'

An instruction can contain 8- or 16-bit immediate values. Here
is an example:

MOV CH, 53H ;Byte immediate value
MOV CX, 3257H ;Word immediate value

Constants can be values assigned to symbols with the EQU direc-
tive. These are examples:

Seven EQU 7 ;7 used wherever Seven referenced
MOV AH, Seven ;Same as MOV AH,7.

See Section 4 for the complete definition of EQU. The format is:

symbol EQU expression

Here, expression can be any assembly language item or expres-
sion. An example is:

xyz EQU [BP+7]

	 Data Definition 31

Attributes of Data Items

The distinguishing characteristics of variables and labels are
called attributes. These attributes influence the particular
machine instructions generated by the assembler.

Attributes tell where the variable or label is defined. Because
of the nature of the processor, it is necessary to know both in
which SEGMENT a variable or label is defined, and the OFFSET
within that segment of the variable or label.

Attributes also specify how the variable or label is used. The
TYPE attribute declares the size, in bytes, of a variable. The
DISTANCE attribute declares whether a label can be referred to
under a different ASSUMEd CS than that of the definition.

Here is a summary of the attributes of data items.

O	 SEGMENT

	 SEGMENT is the segment base address defining the variable or
label. To ensure that variable and labels are addressable at
run-time, the assembler correlates ASSUME CS, DS, ES, and SS
(and segment prefix) information with variable and label
references. The SEG operator (see "Value-Returning Opera-
tors" in Section 4) can be applied to a data item to compute
the corresponding segment base address.

o	 OFFSET

	 OFFSET is the 16-bit byte displacement of a variable or
labels from the number of bytes from the base of the contain-
ing segment. Depending on the alignment and combine-type of
the segment (see Section 2, on the SEGMENT directive), the
run-time value here can be different from the assembly-time
value. The OFFSET operator (see "Value-Returning Operators"
in Section 4) can be used to compute this value.

o	 TYPE (for Data)

BYTE	 1 byte
WORD	 2 bytes
DWORD	 4 bytes
RECORD	 1 or 2 bytes (according to record definition)
STRUC	 n bytes (according to structure definition)

o	 DISTANCE (for Code)

NEAR	 Reference only in same segment as definition;
definition with LABEL, PROC, or id:.

FAR	 Reference in segment rather than definition; defi-
nition with LABEL or PROC.

32 Assembly Language Manual

Variable Definition (DB, DW, DD Directives)

To define variables and initialize memory or both, use the DB,
DW, and DD directives. Memory is allocated and initialized by
DD, DW, and DD in units of BYTES (8 bits), WORDS (2 bytes), and
DWORDS (doublewords, 4 bytes), respectively. The attributes of
the variable defined by DB, DW, or DD are as follows:

o	 The SEGMENT attribute is the segment containing the
definition.

o The OFFSET attribute is the current offset within that
segment.

o	 The TYPE is BYTE (1) for DB, WORD (2) for DW, and DWORD (4) for
DD.

The general form for DB, DW and DD is either:

[variable-name] (DB | DW | DD) exp [, . . .]

or:

[variable-name] (DB | DW | DD) dup-count PUP (init [, ...]))

where variable-name is an identifier and either DB, DW, or DD must
be chosen.

The DB, DW, and DD directives can be used in many ways. The
possibilities are:

1	 constant initialization,

2.	 indeterminate initialization (the reserved symbol "?"),

3.	 address initialization (DW and DD only),

4.	 string initialization,

5.	 enumerated initialization, and

6.	 DUP initialization.

Constant Initialization

One, two or four bytes are allocated. The expression is evalu-
ated to a 17-bit constant using twos complement arithmetic. For
bytes, the least significant byte of the result is used. For
words, the two least significant bytes are used with the least
significant byte the lower-addressed byte, and the most signifi-
cant byte the higher-addressed byte. (As an example, 0AAFFh is
stored with the 0FFh byte first and the 0AAh byte second. For
double words, the same two bytes are used as for words, and they
are followed by an additional two bytes of zeros. Here are some
examples:

	 Data Definition 33

number DW 1F3Eh	 ;3Eh at number, 1Fh at
	 ;number + 1
 DB 100	 ;Unnamed byte
inches_per_yard DW 3*12	 ;Assembler performs arithmetic

Indeterminate Initialization

To leave initialization of memory unspecified, use the reserved
symbol "?".

Here are some examples:

x DW ?	 ;Define and allocate a word,
	 ;contents indeterminate
buffer DB 1000 DUP(?)	 ;1000 bytes.

(The DUP clause is explained in "Dup Initialization" below.)

Address Initialization (DW and DD Only)

[variable-name] (DW | DD) init-addr

An address expression is computed with four bytes of precision--
two bytes of segment base and two bytes of offset. All four
bytes are used with DD (with the offset at the lower addresses),
but only the offset is used with DW. Address expressions can be
combined to form more complex expressions as follows:

o	 A relocatable expression plus or minus an absolute expression
is a relocatable expression with the same segment attribute.

o	 A relocatable expression minus a relocatable expression is an
absolute expression, but it is permitted only if both compo-
nents have the same segment attribute.

o	 Absolute expressions can be combined freely with each other.

o	 All other combinations are forbidden.

Here are some examples of initializing using address expressions:

pRequest DD Request	 ;32-bit offset and segment
	 ;of Request
pErc DD Request+5	 ;Offset of sixth byte in
	 ;Request
oRequest DW Request	 ;16-bit offset of Request

String Initialization

Variables can be initialized with constant strings as well as
with constant numeric expressions. With DD and DW, strings of
one or two characters are permitted. The arrangement in memory
is tailored to the 8086 architecture this way: DW 'XY' allocates
two bytes of memory containing, in ascending addresses, 'Y',

34 Assembly Language Manual

'X'. DD 'XY' allocates four bytes of memory containing in
ascending addresses, 'Y', 'X', 0, 0.

With DB, strings of up to 255 characters are permitted.
Characters, from left to right, are stored in ascending memory
locations. For example, 'ABC' is stored as 41h, 42h, 43h.

Strings must be enclosed in single quotes ('). A single quote is
included in a string as two consecutive single quotes. Here are
some examples:

Single Quote DB	 'I''m so happy!'
Date DB	 '08/08/80'
Quote DB	 '"'
Jabberwocky DB	 '''TWAS BRILLIG AND THE
	 SLITHY TOVES...'
Run Header DW	 'GW'

Enumerated Initialization

[variable-name] (DB | DW | DD) init [, ...]

Bytes, words, or doublewords are initialized in consecutive
memory locations by this directive. An unlimited number of items
can be specified. Here are some examples:

Squares DW 0,1,4,9,16,25,36
Digit_Codes DB 30h,316, 32h,33h,34h,35h ,36h,37h,38h,39h
Message DB 'HELLO, FRIEND.',0Ah
 ;14-byte text plus new line code

DUP Initialization

To repeat init (or list of init) a specified number of times, use
the DUP operator, in this format:

dup-count DUP (init)

The duplication count is expressed by dup-count (which must be a
positive number). init can be a numeric expression, an address
(if used with DW or DD), a question mark, a list of items, or a
nested DUP expression.

Note that in the DB, DW, and DD directives, the name of the vari-
able being defined is not followed by a colon. (This differs
from many other assembly languages.) For example:

Name DW 100 ;okay
Name: DW 100 ;WRONG

Labels and the LABEL Directive

Labels identify locations within executable code to be used as
operands of jump and call instructions. A NEAR label is declared
by any of the following:

	 Data Definition 35

Start LABEL	 ;NEAR is the default
Start LABEL NEAR	 ;NEAR can be explicit
Start:	 ;Followed by code
Start EQU $
Start EQU THIS NEAR
Start PROC	 ;NEAR is the default
Start PROC NEAR	 ;NEAR can be explicit

A FAR label is declared by any of the following:

Start2 EQU THIS FAR
Start2 LABEL FAR
Start PROC FAR

LABEL Directive

To create a name for data or instructions, use the LABEL direc-
tive, in the format:

name LABEL type

name is given segment, offset, and type attributes. The label is
given a segment attribute specifying the current segment, an
offset attribute specifying the offset within this segment, and
a type as explicitly coded (NEAR, FAR, BYTE, WORD, DWORD, struc-
ture-name or record-name).

When the LABEL directive is followed by executable code, type is
usually NEAR or FAR. The label is used for jumps or calls, but
not MOVs or other instructions that manipulate data. NEAR and
FAR labels cannot be indexed.

When the LABEL directive is followed by data, type is one of the
other five classifications. An identifier declared using the
LABEL directive can be indexed if assigned a data type, such as,
BYTE, WORD, etc. The name is then valid in MOVs, ADDs, and so
on, but not in direct jumps or calls. (See Section 4 for indi-
rect jumps or calls.)

A LABEL directive using structure-name or record-name names data and
is assigned a type attribute according to the record or structure
definition.

The main uses of the LABEL directive, illustrated below, are:
accessing variables by an "alternate type," defining FAR labels,
and accessing code by an "alternate distance" (for example, defi-
ning a FAR label with the same segment and offset values as an
existing NEAR label).

LABEL with Variables

The assembler uses the type of a variable in determining the
instruction assembled for manipulating it. You can cause an
instruction normally generated for a different type to be assem-

36 Assembly Language Manual

bled by using LABEL to associate an alternative name and type with
a location. For example, the same area of memory can be treated
sometimes as a byte array and sometimes as a word array with the
definitions:

rgw LABEL WORD
rgb DB 200 DUP(0)

The data for this array can be referred to in two ways:

ADD AL, rgb[50]	 ;Add fiftieth byte to AL
ADD AX, rgw[38]	 ;Add twentieth word to AX

LABEL with Code

A label definition can be used to define a name of type NEAR and
FAR. This is only permitted when a CS assumption is in effect;
the CS assumption (not the segment being assembled) is used to
determine the SEG and OFFSET for the defined name.

For example,

Place LABEL FAR
SamePlace MUL CX,[BP]

introduces Place as a FAR label otherwise equivalent to the NEAR
label SamePlace.

Label Addressability

The addressability of a label is determined by:

1.	 its declaration as NEAR or FAR, and

2.	 its use under the same or different ASSUME:CS directive as
its declaration.

The four possibilities of code for each are shown in Table 3-2.

Table 3-2. Target Label Addressability.

Same
ASSUME CS:

Different
ASSUME CS:

Near Label

NEAR Jump/Call

Not allowed

Far Label

NEAR Jump
FAR Call

FAR Jump
FAR Call

A NEAR jump or call is assembled with a 1- or 2-byte displacement
using modulo 64K arithmetic. 64K bytes of the current segment
can be addressed as NEAR.

	 Data Definition 37

A FAR jump or call is assembled with a 4-byte address. The
address consists of a 16-bit offset and 16-bit segment base
address. An entire megabyte of memory can be addressed as FAR.

(The semantics of PROC/ENDP directives are discussed in Section
2.)

Records

A record is a format used to define bit-aligned subfields of bytes
and words. The two steps in using records are:

1. define and name a record format, and

2. invoke the record name as an operator, thereby allocating and
initializing memory.

Define a record by writing:

record-name RECORD field-name:width [=default][,]

Neither record-name nor any of the field names can conflict with
existing names. The sum of the widths of the fields can not
exceed 16 bits. Each width can be an expression, but must not
make forward references.

The assembler divides records into two classes, those with a
total width of up to 8 bits, and those with a total width of up
to 16 bits. A byte is allocated for each instance of a record of
the first class, and a word for each instance of a record of the
second class. The data of each record instance is right-justi-
fied within the allocated memory.

The definition of a record can include a specification of how
instances are to be initialized. This specification is given
with the optional [=default] clause. For example, this
definition:

HashEntry RECORD state:2=3, sKey:4, rbKey:9

might be used in setting up a hash table. Each entry has a 2-bit
state field, a 4-bit "size of key" sKey, and a 9-bit "relative
byte of key in page" rbKey. The state field, being two bits
wide, can hold four values. The state field is explicitly speci-
fied to default to 3. The other fields are assigned the implicit
default value 0, since no explicit default is specified. A field
eight bits wide can have a single character as its default value,
as in bData:8='a'.

When a record is declared, the assembler associates with its
field names these special values:

o	 the width of the field,

38 Assembly Language Manual

o	 the bit position of the right end of the field, and

o	 a mask constant for extracting the field from an instance of
the record.

The width is computed with the WIDTH operator, the mask with the
MASK operator, and the bit position with the field name itself.
Thus, with HashEntry as above, the following holds.

state = 0Dh sKey = 9h rbKey = 0h
MASK state = E00h MASK sKey = 1E00h MASK rbKey = 1FFh
WIDTh state = 3h WIDTh skey =	 4h WIDTh rbKey = 9h

As another example, let us define the format for the first two
bytes of an instruction.

Inst2b RECORD Opcode 6, D:1, W:1, Mod:2, Reg : 3, Rm:3

The definition might be used in this way:

Inst_Table Inst2b 100 DUP(<,,,,,>)	 ;Code to initialize
	 ;Inst_Table
 MOV AX, Inst_Table[BX]	;Load the entry at
	 ;offset BX
 AND AX, MASK Mod	 ;Mask off all but Mod
 MOV CL, Mod
 SHR AX, CL	 ;Now AX contains Mod

This example also shows how, for each record field, the bit position
and MASK operator can be used to extract the field from a record.

The assembler right-justifies a record's user-defined fields when
those fields do not occupy an entire word or byte. The fields are
moved to the least-significant bit-positions of the byte or word
defined by the record. For example, the definition:

Ascii_Twice RECORD C1:7,C2:7

would result in the format:

15 14 13 7 6 0
| (undefined) | (C1) | (C2) |
 2 bits 7 bits 7 bits

Initializing Records

After records have been declared, the record name and operator
can be used for allocation and initialization. There are two
formats:

Format 1:

[name] record-name <[init][, ...]>

	 Data Definition 39

Format 2:

[name] record-name dup-count DUP (<[init] [, ...]>)

In both formats, the first byte or word (depending on the RECORD
definition) of the allocated memory is optionally named. The
record definition to be used is specified by record-name.
Finally, the operand is a possibly empty list of initial field
values. For example;

<>	 Use field default values from the record definition.
<8,,10>	 Set initial values of the first and third fields to 8

and 10, respectively, but use the default from the
definition for the middle field.

The initial field values can be constants, constant expressions, or
the indeterminate initialization "?". If the expression eval-
uates to a number not expressible in binary within the width of
the corresponding record field, then the number is truncated on
the left. For example, 11001 binary, in a 2-bit field, is trun-
cated to 01.

With Format 2, multiple instances of the record can be allocated
at once. The number of copies of the record to be allocated is
given by dup-count. Note that in this format, the angle-brackets
must be enclosed within parentheses as shown.

You can use a record as part or all of an expression, as in:

MOV AX, Inst2B<OP,D,W,MOD,REG,RM>

Structures

Just as records are used to format bit-aligned data at the byte
or word level, structures are used to define byte-aligned fields
within multibyte data structures.

Structures can be used to group together logically related data
items.

For example, suppose you give the name Car to a structure. You
use this structure to define individual fields of size (in bytes)
1, 2, 2, and 4 symbolically. The assembler generates the rela-
tive offsets:

Car STRUC	 ;No memory reserved--use this
	 ;as template for Ford below
Year DB 0	 ;Reference to .Year generates
	 ;relative offset of 0
Model DW 0	 ;Reference to .Model generates
	 ;relative offset of 1
Color DW 0	 ;Reference to .Color generates
	 ;relative offset of 3
License DB 'XXXX'	 ;Reference to .License generates
	 ;relative offset of 5
Car ENDS

40 Assembly Language Manual

The body of the structure definition is delimited by the STRUC
and ENDS directives. The spacing of offsets within the structure
is determined by the enclosed DB, DW, and DD directives.

You now allocate real memory and initialize using Car as an
operator.

Ford Car<63,'FL','GR','FOXY'>	 ;allocate and initialize

Note that the programmer-assigned name Car is used here as an
operator, and that the initialization of the structure is done with
both integer data (63) and character data ('FL').

This use of Car as an operator is the assembly-time analog of
this run-time initialization:

FORD DB 8 DUP(?)	 ;allocate 8 bytes
	 ;(uninitialized)
MOV Ford.Year,63 	 ;initialize Year field
MOV Ford.Model,'FL' 	 ;initialize Model field
MOV Ford.Color,'GR' 	 ;initialize Color field
MOV Ford.License,'FOXY'	 ;initialize License field

It is also possible, as described below, to specify default
values during the definition of the structure, and to selectively
override these defaults during memory allocation. All this can
take place during assembly.

As another example, here is a structure that implements the
request block for the Close File operator used with the CTOS
Operating System:

RqCloseFile STRUC
 sCntInfo DW 2
 nReqPbCb DB 0
 nRespPbCb DB 0
 userNum DW ?
 exchResp DW ?
 ercRet DW ?
 rqCode DW 10
 fh DW ?
RqCloseFile ENDS

rqCloseFile1 RqCloseFile<,,,1,3,,,>	 ;Nondefault values
	 ;are userNum 1,
	 ;exchResp 3
 MOV AX, fhNew	
 MOV rqCloseFile1.fh	 ;Fill in the fh
 	 ;field if an rq
 CMP rqCloseFile1.ercRet, ercOk	 ;Is the error return
	 ;equal to the value
	 ;ercOK?

	 Data Definition 41

Structures are not restricted to use with statically allocated
data. For example

CMP [BP+rbRqCloseFile].rqCode,10	 ;Examine rqCode in an
	 ;anonymous instance of
	 ;RqCloseFile that's on the

	 ;stack

Here is the general format of the STRUC/ENDS statement-pair,
together with the enclosed DB, DW, and DD directives:

structure-name STRUC
 .
 .
 .
[field-name] (DB | DW | DD) (

default [, ...]
dup-count DUP (default [, ...])

 .
 .
 .
structure-name ENDS

In this case, DB, DW, and DD are used just as defined earlier,
with the exception that there cannot be any forward references.
Matching STRUC/ENDS pairs must have the matching structure-
names. Field-names are optional: if used, they must be unique
identifiers.

Default Structure Fields

Default values for structure fields are as specified in the DB,
DW, or DD directives. Because the STRUC/ENDS pair does not allo-
cate memory, these default initializations have no immediate
effect. The defaults are used to initialize memory later when
the structure-name is used as a memory allocation operator as in
the allocation of rqCloseFile1, above.

Overridable Structure Fields

When memory is allocated certain structure-field default values
can be overridden by initial values specified in the allocation
expression; these are called simple fields. Other field values
that include a list or a DUP clause cannot be overridden. A DB
character string is considered simple. Here are some examples of
what can and cannot be overridden:

Super STRUC
 DW ?	 ;Simple field: override okay
 DB 'Message'	 ;Simple character string field: override
	 ;okay
 DD 5 DUP(?)	 ;Multiple field: no override
 DB ?,2,3	 ;Multiple field: no override
Super ENDS

42 Assembly Language Manual

Initializing Structures

After structures have been declared, they can be allocated and
initialized with the structure-name as operator. The general
format is similar to that for record initialization. (There are
two formats.)

Format 1:

[name] structure-name <[init][, ...]>

Format 2 (with duplication):

[name] structure-name dup-count PUP (<[init] [, ...]>)

In both formats, the first byte or word (depending on the struc-
ture definition) of the allocated memory is optionally named. The
structure definition to be used is specified by structure-name.
Finally, the operand is a possibly empty list of initial field
values. For example:

<>	 Use field default values from the structure definition.

<8,,10>	 Set initial values of the first and third fields to 8
and 10, respectively, but use the default from the
definition for the middle field.

The initial field values can be constants, constant expressions,
or the indeterminate initialization "?".

One-byte strings can override any field. Two-byte strings can
override any DW or DD field. Multibyte strings can override a DB
field, but only if the overriding string is no longer than the
overridden string.

The number of copies of the structure to be allocated is
dup-count; it must evaluate to a positive integer.

	 Operands and Expressions 43

4 OPERANDS AND EXPRESSIONS

Operands

The instruction set of the 8086 makes it possible to refer to
operands in a variety of ways. (The instruction set is described
in the Central Processing Unit.) Either memory or a register can
serve as the first operand (destination) in most two-operand
instructions, while the second operand (source) can be memory a
register, or a constant within the instruction. There are no
memory-to-memory operations.

A 16-bit offset address can be used to directly address operands in
memory. Base registers (BX or BP) or index registers (SI or DI)
or both, plus an optional 8- or 16-bit displacement constant, can
be used to indirectly address operands in memory.

Either memory or a register can receive the result of a two-operand
operation. Any register or memory operand (but not a constant
operand) can be used in single-operand operations. Either 8- or
16-bit operands can be specified for almost all operations.

Immediate Operands

An immediate value expression can be the source operand of two-
operand instructions, except, for multiply, divide, and the
string operations.	 Here are the	formats:

[label:] mnemonic memory-reference, expression

and

[label:] mnemonic register expression

Here [label] is an optional identifier. mnemonic is any two-
operand mnemonic (for example, MOV, ADD, and XOR). See "Memory
Operands" below for the definition of memory-reference. In
summary, it has a direct 16-bit offset address, and is indirect
through BX or BP, SI or DI, or through BX or BP plus SI or DI,
all with an optional 8- or 16-bit displacement. In the second
format, register is any general-purpose (not segment) register.
For a definition of expression, see the rest of this section.
See Table 3-1 (Section 3) for rules on formation of constants.

The steps that the assembler follows in processing an instruction
containing an immediate operand are;

o	 Determine if the destination is of type BYTE or WORD.

o	 Evaluate the expression with 17-bit arithmetic.

o	 If the destination operand can accommodate the result, encode
the value of the expression, using twos complement arith-
metic, as an 8- or 16-bit field (depending on the type, BYTE

44 Assembly Language Manual

	 or WORD, of the destination operand) in the instruction being
assembled.

In 8086 instruction formats, as in data words, the	least signifi-
cant byte of a word is at the lower memory address.

MOV CH, 5	 ;8-bit immediate value to register
ADD DX.3000H	 ;16-bit immediate value to register
AND Table[BX], 0FF00h	 ;16-bit immediate value (where
	 ;Table is a WORD) through BX,
	 ;16-bit displacement
XOR Table[BX+DI+100], 7	 ;16-bit immediate through
	 ;BX+DI+(Table+100)

Register Operands

The 16-bit segment registers are CS, DS, SS, and ES. The 16-bit
general registers are AX, BX, CX, DX, SP, BP, SI, and DI. The 8-
bit general registers are AH, AL, BH, BL, CH, CL, DH, and DL.
The 16-bit pointer and index registers are BX, BP, SI, and DI.
The 1-bit flag registers are AF, CF, DF, IF, OF, PF, SF, TF, and
ZF.

Segment base addresses are contained in segment registers and must
be initialized by the programmer.

Arithmetic and logical operations can be performed using each of
the general 8-bit, general 16-bit, and pointer and index 16-bit
registers. So, even though AX is often called "the accumulator,"
there are actually eight separate 16-bit accumulators and eight
8-bit accumulators as listed above. Each of the 8-bit accumula-
tors is either the high-order (H) or the low-order (L) byte of
AX, BX, CX, or DX.

After each instruction, the flags are updated to reflect conditions
detected in the processor or any accumulator. See Appendix A
and the Central Processing Unit for the flags affected for each
instruction.

These are the flag-register mnemonics:

AF: Auxiliary Carry
CF: Carry	
DF: Direction	
IF: Interrupt-enable
OF: Overflow	
PF: Parity	
SF: Sign	
TF: Trap	
ZF: Zero	

Explicit Register Operands

These are two-operand instructions that explicitly specify
registers:

	 Operands and Expressions 45

o	 Register to register

	 [label:] mnemonic reg, reg

	 Example.

	 ADD BX, DI ;BX=BX+DI

o	 Immediate to register

	 [label:] mnemonic reg imm

	 Example:

	 ADD BX, 30H ;BX=BX+30H

o	 Memory to register

	 [label:] mnemonic reg mem

	 Example:

	 ADD BX, Table[DI] ;BX=BX+DI'th entry in Table

o	 Register	 to memory

	 [label:] mnemonic mem, reg

	 Example:

	 ADD Table[D1], BX ;Increment DI'th entry in Table by BX

(Note that "i'th entry" means "entry at i'th byte.")

Implicit Register Operands

These instructions use registers implicitly:

Instruction	 Implicit Uses

AAA, AAD, AAM, AAS	 AL, AH
CBW, CWD	 AL, AX or AX:DX
DAA, DAS	 AL
IN, OUT	 AL or AX
MUL, IMUL, DIV, IDIV	 AL, AX or AX:DX
LAHF, SAHF	 AH
LES	 ES
LDS	 DS
Shifts, Rotates	 CL
String	 CX, SI, DI
XLAT	 AL, BX

46 Assembly Language Manual

The instructions with a single register operand have the form:

[label:] mnemonic reg

Example:

INC DI ;DI=DI+1

Segment Registers

Segment registers are discussed in Section 2.

General Registers

When a 16-bit general register or pointer/index register is one
of the operands of a two-operand instruction, the other operand
must be immediate, a WORD reference to memory, or a WORD
register.

When an 8-bit general register (AH, AL, BH, BL, CH, CL, DH, DL) is
one of the operands of a two-operand instruction, the other operand
must be an 8-bit immediate quantity, a BYTE reference to memory,
or a BYTE register.

Flags

Instructions never specify the 1-bit flags as operands; flag
instructions (as STC, CLC, CMC) manipulate all flags at once, and
other instructions affect one or more flags implicitly (as INC,
DEC, ADD, MUL, and DIV).

See Section 7 for flag operation and Appendix A for how each
instruction affects the flags.

Memory Operands

Memory Operands to JMP and CALL

The JMP and CALL instructions take a simple operand. There are a
number of different cases, determined by the operand. The
control transfer can be' direct (with the operand specifying the
target address) or indirect (with the operand specifying a word
or doubleword containing the target address) . The transfer can
be NEAR (in which case only IP changes) or PAR (both IP and CS
change). Here are examples to illustrate the cases:

	 Operands and Expressions 47

Operand to JMP/CALL

NextIteration
FltMul
DX
LabelsNear[DI]

LabelsFar[DI]

DWORD PTR [BX]

WORD PTR [BX]

Direct/Indirect

Direct
Direct
Indirect
Indirect

Indirect

Indirect

Indirect

NEAR/FAR

NEAR1

FAR2

NEAR
NEAR3

FAR4

FAR
FAR
NEAR

Target

NextIteration
FltMul
CS:DX
Contained
in word at
LabelsNear[DI]
Contained
in dword at
LabelsFar[DI]
Contained in
dword at [BX]
Contained in
word at [BX]

1Assuming NextIteration is a NEAR label in the same segment or
group as the jump or call.

2Assuming FltMul is a FAR label--a label to which control can
be transferred from outside the segment containing the label.

3Assuming LabelsNear is an array of words.

4Assuming LabelsFar is an array of dwords .

CALL differs from JMP only in that a return address is pushed
onto the stack. The return address is a word for a near call and
a dword for a far call.

If the assembler determines that the target of a JMP or CALL is
addressable by a 1-byte displacement from the instruction, it
uses a special short jump or call instruction. Here are some
examples:

Again: DEC BX	
 JNZ Again	 ;Short jump will be used.
 JMP Last	 ;Not short because Last is a forward
	 ;reference.
Last: ...

 JMP $+17	 ;Short jump since displacement is in the
 	 ;range -128 to 127. BEWARE: Variable
	 ;length instructions make it easy to get
	 ;this wrong; it’s safer to use a label.
 JMP SHORT Last	;Forces assembly of a short transfer; it

 	 ;will yield an error if the target is
	 ;not addressable with a 1-byte
	 ;displacement.

48 Assembly Language Manual

(NOTE: Do not confuse the concepts of PUBLIC and EXTRN with NEAR
and FAR. PUBLICS and EXTRNs are used at assembly- and link-time
only and are not run-time concepts. NEAR and FAR, in contrast,
control the instructions to be executed at run-time. It is entirely
possible for an EXTRN to be NEAR.)

Variables

This section covers the use of simple, indexed, and structured
variables as operands. If you are unfamiliar with how to define
and initialize variables, review Section 3.

Simple Variables. An unmodified identifier used the same way it
is declared is a simple variable. Here is an example:

wData DW 'AB'
 .
 .
 .
 MOV BX, wData

Indexed Variables. A simple variable followed by a square-
bracketed expression is an indexed variable. The expression in
square brackets is a constant or constant expression, a base
register (as BX or BP) or an index register (as SI or DI), a base
or index register plus or minus a constant expression (in any
order), or a base register plus an index register plus or minus a
constant or constant expression (in any order) .

When you use indexed variables, be aware that the indexing is 0-
origin (that is, the first byte is numbered 0), the index is
always a number of bytes, and the type is the type of the simple
variable to which the index is applied. For example, if the
table Primes is defined by:

Primes DW 250 DUP(?)

and register BX contains the value 12, then the instruction.

MOV Primes[BX], 17

sets the twelfth and thirteenth bytes of Primes (which are the
bytes of the seventh word in Primes) to 17.

Double-Indexed Variables. Double-indexed variables use a sum of
two displacements to address memory. Here is an example:

Primes[BX][SI+5]

Most forms of double indexing can be written with a more complex
single index expression. For example, these two forms are
completely equivalent:

Var[Disp1][Disp2]

 and

	 Operands and Expressions 49

Var[Disp1+Disp2]

The displacements can be constants or expressions that evaluate
to constants, base or index registers (BX, BP, SI or DI) or
base or index registers plus or minus a constant offset. The
only restriction is that BX and BP can not both appear, and SI
and DI cannot both appear in the same double-indexed variable.

These three expressions are all invalid.

Primes[BX+BP]
Primes[SI][2*BX]
Primes[BX][BP]

Indexing can be used in combination with structures. Recall the
example given earlier

RqCloseFile STRUC
 sCntInfo DW 2
 nReqPbCb DB 0
 nRespPbCb DB 0
 userNum DW ?
 exchResp DW ?
 ercRet DW ?
 rqCode DW 10
 fh DW 7
RqCloseFile	 ENDS

All of the following are valid:

MOV RqCloseFile.sCntInfo, AX
MOV [BX].userNum, AX
MOV [BP][SI-4].fh

Attribute Operators

In addition to indexing, structure, arithmetic, and logical oper-
ators, operands can contain a class of operators called attribute
operators. Attribute operators are used to override an operand's
attributes, to compute the values of operand attributes, and to
extract record fields.

PTR, the Type Overriding Operator

PTR is an infix operator. That is, it has two operands, and is
written between them in this format:

type PTR addr-expr

type is BYTE, WORD, DWORD, NEAR, FAR, or structure-name.
addr-expr is a variable, label, or number.

PTR sets or overrides the type of its operand without affecting
the other attributes of the operand, such as SEGMENT and

50 Assembly Language Manual

OFFSET. Here are some examples of its use with data. Suppose
rgb and rgw are declared by:

rgb DB 100 DUP(?)
rgw DW 100 DUP(?)

Then:

INC rgb[SI]
INC rgw[SI]

generate, respectively, byte-increment and word-increment
instructions. Types can be overridden with:

INC WORD PTR rgb[SI] ;word increment
INC BYTE PTR rgw[SI] ;byte increment

Sometimes no variable is named in an instruction: the instruction
uses an "anonymous" variable. In such cases the PTR operator must
always be used. Thus:

INC WORD PTR [BX] ;word increment
INC BYTE PTR [BX] ;byte increment
INC [BX] ;INVALID because the operand [BX] is
 ;"anonymous."

Segment Override

The segment override operator is discussed in Section 2. It is
denoted by the colon, ":", and takes these three forms:

o	 seg-reg:addr-expr

o	 segment-name addr-expr

o	 group-name:addr-expr

The SEGMENT attribute of a label, variable, or address-expression
is overridden by the segment override operator. The other attri-
butes are unaffected. The first two forms do a direct override;
the third recalculates the offset from the GROUP base.

SHORT

The single argument of the SHORT operator is an offset that can
be addressed through the CS segment register. When the target
code is within a 1-byte signed (twos complement) self-relative
displacement, SHORT can be used in conditional jumps, jumps, and
calls. This means that the target must lie within a range no
more than 128 behind the beginning of the jump or call instruc-
tion, and no more than 127 bytes in front of it. (See "Memory
Operands to JMP and CALL Operands" in this Section for more on
SHORT.)

	 Operands and Expressions 51

THIS

The single argument of the THIS operator is a type (BYTE, WORD,
DWORD) or distance (NEAR, FAR) attribute. A data item with the
specified type or attribute is defined at the current assembly
location. Here are the formats:

THIS type
THIS distance

The segment and offset attributes of the defined data item are,
respectively, the current segment and the current offset. The
type or distance attributes are as specified. Thus the two
statements:

byteA LABEL BYTE
byteA EQU THIS BYTE

have the same effect. Similarly, $ is equivalent to:

THIS NEAR

In the example:

E1 EQU THIS FAR
E2: REPNZ SCASW

the two addresses, E1 and E2, differ exactly in that E1 is FAR
whereas E2 is NEAR.

Value-Returning Operators

Here are the value-returning operators:

o	 TYPE. It accepts one argument, either a variable or a
label. TYPE returns, for variables, 1 for type BYTE, 2 for
type WORD, 4 for type DWORD, and the number of bytes for a
variable declared with a structure type. TYPE returns, for
labels, either -1 or -2 (representing, respectively, NEAR or
FAR) .

o	 LENGTH. It accepts one argument, a variable. It returns the
number of units allocated for that variable. (The number
returned is not necessarily bytes.) Here are examples:

	 One DB 250(?) ;LENGTH One=250
 Two DW 350(?) ;LENGTH Two=350

o	 SIZE. It returns the total number of bytes allocated for a
variable. SIZE is the product of LENGTH and TYPE.

o	 SEG. It computes the segment value of a variable or a
label. Use it in ASSUME directives or to initialize segment
registers, as described in Section 2.

52 Assembly Language Manual

o	 OFFSET. It returns the offset of a variable or label. At
time of linking, when the final alignment of the segment is
frozen the value is resolved. If a segment is combined with
pieces of the same segment defined in other assembly modules,
or is not aligned on a paragraph boundary, the assembly-time
offsets shown in the assembly listing can not be valid at
run-time The offsets are properly calculated by the Linker
if you use the OFFSET operator.

	 The only attribute of a variable in many assembly languages
is its offset. A reference to the variable's name is a
reference also to its offset. Three attributes are defined
by this assembly language for a variable, so to isolate the
offset value, the OFFSET operator is needed. In a DW direc-
tive, however, the OFFSET operator is implicit.

	 The variables in address expressions that appear in DW and DD
directives have an implicit OFFSET.

	 When used with the GROUP directive, the OFFSET operator does
not yield the offset of a variable within the group. It
returns rather the offset of the variable within its
segment. Use the GROUP override operator to get the offset
of the variable within the group. Here is an example:

DGroup GROUP Data,??SEG
data SEGMENT
 .
 .
 .
xyz DB 0
 .
 .
 .
 DW xyz	 ;Offset within segment
 DW DGroup:xyz	 ;Offset within group
data ENDS
 ASSUME CS:??SEG,DS:DGroup
 MOV CX,OFFSET xyz	 ;Loads seg offset of xyz
 MOV CX,OFFSET Dgroup:xyz	;Loads group offset of
	 ;xyz
 LEA CX, xyz	 ;Also loads group offset
	 ;of xyz
 .
 .
 .

You may not use forward references to group-names.

	 Operands and Expressions 53

Record Operators

The use of operators with records is illustrated in Section 3.
The definitions are repeated here for completeness. Associated
with each field of a record are the following:

o	 Shift-count. This is the field-name of the record.

o	 MASK operator. This operator has one argument, which is a
field-name. It returns a bit-mask that consists of 1's in
the bit positions included by the field and 0's elsewhere.

o	 WIDTH operator. This operator returns the number of bits in a
record or field.

If the definition of a record formats 8 bits, the record is of
type BYTE, and if it formats 16 bits, of type WORD.

Operator Precedence in Expressions

The assembler evaluates expressions from left to right. It eval-
uates operators with higher precedence before other operators
that come directly before or after. To override the normal order
of precedence, use parentheses.

In order of decreasing precedence, here are the classes of
operators:

1.	 Expressions within parentheses, expressions within angle
brackets (records), expressions within square brackets, the
structure "dot" operator, ".", and the LENGTH, SIZE, WIDTH,
and MASK operators.

2.	 PTR, OFFSET, SEG, TYPE, THIS, and "name:" (segment override).

3.	 Multiplication and division: *, /, MOD, SHL, SHR.

4. Addition and subtraction: +, -.

5.	 Relational operators: EQ, NE, LT, LE, GT, GE.

6.	 Logical NOT.

7.	 Logical AND.

8.	 Logical OR and XOR.

9.	 SHORT.

54 Assembly Language Manual

EQU Directive

Use EQU to assign an assembly-time value to a symbol. This is
the format:

name EQU expression

Here are examples to illustrate the cases:

y EQU z	 ;y is made a synonym for z.
xx EQU [BX+DI-3]	 ;xx is a synonym for an indexed reference
	 ;--note that the right side is evaluated
	 ;at use, not at definition.
x EQU EX:Bar[BP+2]	;Segment overrides are also allowed.
xy EQU (TYPE y)*5	 ;Random expressions are allowed.
RAX EQU AX	 ;Synonyms for registers are allowed.

PURGE Directive

Use the PURGE directive to delete the definition of a specified
symbol. After a PURGE, the symbol can be redefined. The
symbol's new definition is used by all occurrences of the symbol
after the redefinition. You cannot purge register names,
reserved words, or a symbol appearing in a PUBLIC directive.

	 Forward References 55

5 FORWARD REFERENCES

The instruction set of the 8086 often provides several ways of
achieving the same end. For example, if a jump is within 128
bytes of its target, the control transfer can be a SHORT jump
(two bytes), a NEAR jump (three bytes), or a FAR jump (four
bytes). If the assembler "knows" which case applies, it
generates the optimal object code.

However, for the convenience of the programmer, the assembly
language allows, in many cases, the use of a variable or label
prior to its definition. When the assembler encounters such a
forward reference, it must reserve space for the reference,
although it does not yet know whether the label (for example)
will turn out to be SHORT, NEAR, or FAR. The assembler makes a
"guess," if it must, about the memory required, and proceeds on
the basis of that guess.

The assembler makes two successive passes over the source
program, and can always tell during the second pass whether a
guess made during the first pass was correct. If a guess is too
generous, the assembler can repair matters during the second pass
by, for example, inserting an extra no-op instruction after an
offending jump, and still produce valid output. If a guess is
too conservative, however, no such remedy is available, and the
assembler flags the forward reference as an error during the
second pass.

The programmer can generally repair this kind of error by a small
change to the source text and a reassembly. For example, the
insertion of an attribute coercion such as "BYTE PTR" or "FAR
PTR" is often a sufficient correction. However, the safest
course is to follow programming practices that make it
unnecessary for the assembler to guess. This can be done as
follows:

o	 Put EQU directives early in programs.

o	 Put EXTRN directives early in programs.

o 	 Within a multisegment source file, try to position the data
segments (and hence the variable definitions) before the code
segments.

	 Instruction Format 57

6 INSTRUCTION FORMAT

The instruction format of the 8086 uses up to three fields to
specify the location of an operand in a register or in memory.
The assembler sets all three fields automatically when it
generates code. These fields, when used, make up the second byte
of an instruction, which is called the "MOD --- R/M" byte.

The two most significant bits of the "MOD --- R/M" byte are the
MOD field, which specifies how to interpret the R/M field.

The next three bits are occupied by the REG field, which
specifies an 8- or 16-bit register as an operand. Instead of
specifying a register, the REG field can, in some instructions,
refine the instruction code given in the first byte of an
instruction.

The next three bits are occupied by the R/M field, which can
specify either a particular register operand or the addressing
MODe to select a memory operand. This occurs in combination with
the MOD field.

The MOD and R/M fields determine the effective address (EA) of
the memory operand and the interpretation of successive bytes of
the instruction, as follows:

MOD	 Interpretation

00	 DISP = 0
(disp-low and disp-high are absent)

01	 DISP = disp-low sign-extended to 16 bits (disp-high
is absent)

10	 DISP = disp-high, disp-low

11	 There is no DISP (disp-low and disp-high are both
absent) and R/M is interpreted as a register.

If MOD ≠ 11, then R/M is interpreted as follows:

R/M	 interpretation

000	 [BX]+[SI]+DISP
001	 [BX]+[DI]+DISP
010	 [BP]+[SI]+DISP
011	 [BP]+[DI]+DISP
100	 [SI]+DISP
101	 [DI]+DISP
110	 [BP]+DISP if MOD ≠ 0
	 DISP if MOD = 0
111	 [BX]+DISP

58 Assembly Language Manual

If MOD = 11, then the effective address is a register designated
by R/M. In word instructions, the interpretation is:

R/M	 Register

000	 AX
001	 CX
010	 DX
01l	 BX
100	 SP
101	 BP
110	 SI
111	 DI

In byte instructions (W = 0), the interpretation is:

R/M	 Register

000	 AL
001	 CL
010	 DL
011	 BL
100	 AH
101	 CH
110	 DH
111	 BH

	 Flags 59

7 FLAGS

Flag Registers

Certain results of data manipulations are distinguished or
denoted by flags. The flags that are affected by data
manipulations are AF, CF, OF, PF, SF, and ZF.

The four basic mathematical operations (addition, subtraction,
multiplication and division) are provided by the processor. 8-
and 16-bit operations are available, as are signed and unsigned
arithmetic. The representation of signed values is by standard
twos complement arithmetic. The addition and subtraction
operations serve as both signed and unsigned operations; the two
possibilities are distinguished by the flag settings.

Arithmetic may be performed directly on unpacked decimal digits
or on packed decimal representations.

Some operations indicate these results only by setting flags.
For example, the processor implements "compare" as a special
subtract which does not change either operand but does set flags
to indicate a zero, positive, or negative result.

By using one of the conditional jump instructions, a program can
test the setting of five of the flags (carry, sign, zero,
overflow, and parity) . The flow of program execution can be
altered based on the outcome of a previous operation. One more
flag, the auxiliary carry flag, is used by the ASCII and decimal-
adjust	instructions.

It is important to understand which instructions set which
flags. Suppose you wish to load a value into AX, and then test
whether the value is 0. The MOV instruction does not set ZF, so
the following does not work:

MOV AX, wData
JZ Zero

Instead, since ADD does set ZF, the following does work:

MOV AX, wData
ADD AX, 0
JZ Zero

A flag can be set, but not tested, over the duration of several
instructions. In such cases, the intervening instructions must
be carefully checked to ascertain that they do not affect the
flag in question. This is generally a dangerous programming
practice.

(See Appendix A for the flags set by each instruction.)

60 Assembly Language Manual

Flag Usage

Most arithmetic operations set or clear six flag registers.
"Set" means set to 1, and "clear" means clear to 0.

Auxiliary Carry Flag (AF)

If an operation results in a carry out of or a borrow into the
low-order four bits of the result, AF is set; otherwise it is
cleared. A program cannot test this flag directly: it is used
solely by the decimal adjust instructions.

Carry Flag (CF)

If an operation results in a carry out of (from addition) or a
borrow into (from subtraction), the high-order bit of the result,
CF is set; otherwise it is cleared.

This flag usually indicates whether an addition causes a "carry"
into the next higher order digit or a subtraction causes a
"borrow." CF is not, however, affected by increment (INC) and
decrement (DEC) instructions. CF is set by an addition that
causes a carry out of the high-order bit of the destination, and
cleared by an addition that does not cause a carry. CF is also
affected by the logical AND, OR, and XOR instructions.

The contents of an operand are moved one or more positions to the
left or right by the rotate and shift instructions. The carry
flag is treated as if it were an extra bit of the operand. Only
RCL and RCR preserve the original value in CF. The value does
not, in these cases, remain in CF. The value is replaced with
the next bit rotated out of the source. If an RCL is used, the
value in CF is replaced by the high-order bit and goes into the
low-order bit. If an RCR is used, the value in CF is replaced by
the low-order bit and goes into the high-order bit. (This is
useful in multiple-word arithmetic operations.) In other rotates
and shifts, the value in CF is lost.

Overflow Flag (OF)

If a signed operation results in an overflow, OF is set;
otherwise it is cleared. (That is, an operation results in a
carry into the high-order bit of the result but not a carry out
of the high-order bit, or vice versa.)

Parity Flag (PF)

If the modulo 2 sum of the low-order eight bits of an operation
is 0 (even parity), PF is set; otherwise it is cleared (odd
parity).

	 Flags 61

Following certain instructions, the number of one bits in the
destination is counted and the parity flag set if the number is
even and cleared if the number is odd.

Sign Flag (SF)

If the high-order bit of the result is set, SF is set; otherwise
it is cleared.

Following an operation, the high-order bit of its target can be
interpreted as a sign. The SF flag is set equal to this high-
order bit by instructions that affect SF. Bit 7 is the high-
order bit of a byte and bit 15 is the high-order bit of a word.

Zero Flag (ZF)

If the result of an operation is 0, ZF is set; otherwise it is
cleared.

Following certain operations, if the destination is zero, the
zero flag is set, and if the destination is not zero, the zero
flag is cleared. Both ZF and CF are set by a result that has a
carry and a zero.	 Here is an example:

 00110101
+11001011
 00000000 Carry Flag = 1
 Zero Flag = 1

	 Macro Assembler 63

8 MACRO ASSEMBLER

Introduction

The assembler supports the definition and invocation of macros:
expressions, possibly taking parameters, that are evaluated
during assembly to produce text. The text that results is then
processed by the assembler as source code, just as if it had been
literally present in the input to the assembler. For example,
consider the program fragment;

%*DEFINE (Call2(subr,arg1,arg2))(
 PUSH %arg1
 PUSH %arg2
 CALL %subr
)

%Call2 (Input,p1,p2)

This fragment defines a macro, Call2, of three arguments, and
then invokes it. The invocation is to the expanded form:

PUSH p1
PUSH p2
CALL Input

The character "%" is called the metacharacter and is used to
activate all macro processing facilities: macro invocations are
preceded by "%" and macro definitions by "%*". (The
metacharacter can be changed; how to do this is described later
in this Section.)

The simplest kind of macro definition takes the form:

%*DEFINE (MacroName ParameterList) (Body)

where MacroName is an identifier, ParameterList is a list of
parameter names enclosed in parentheses, and Body is the text of
the macro.

When parameter names appear in the Body, they are preceded by the
"%" character. A simple macro invocation takes the form:

%MacroName (ArgList)

This expands to the corresponding macro Body with parameter names
of the macro definition replaced by arguments from the macro
invocation.

LOCAL Declaration

The purpose of macros is to permit the definition of a pattern--
the body of the macro--that is to be recreated at each invocation

64 Assembly Language Manual

of the macro. Thus two invocations of a macro normally expand to
source text differing only insofar as the parameters of invocation
differ. Consider however the definition:

%*DEFINE (CallNTimes(n,subr))(
 MOV AX,%n
Again: DEC AX
 JZ Done
 PUSH AX
 CALL %subr
 POP AX
 JMP Again
Done:)

An invocation such as %CallNTimes(5,FlashScreen) expands to;

 MOV AX,5
Again: DEC AX
 JZ Done
 PUSH AX
 CALL FlashScreen
 POP AX
 JMP Again
Done:

A second invocation of this macro produces an error because it
doubly defines the labels Again and Done. The problem is that in
this case we want a new, unique pair of labels created for each
invocation.	 This can be done in a macro definition using the
LOCAL declaration. The proper form is illustrated by:

%*DEFINE(CallNTimes(n,subr)) LOCAL Again Done (
 MOV AX,%n
%Again: DEC AX
 JZ %Done
 PUSH AX
 CALL %subr
 POP AX
 JMP %Again
%Done:)

Conditional Assembly

In a manner carefully integrated with macro processing, the
assembler also supports assembly-time expression evaluation and
string manipulation facilities. These include the functions
EVAL, LEN, EQS, GTS, LTS, NEX, GES, LES, and SUBSTR. Here are
examples to illustrate the possibilities:

	 Macro Assembler 65

Function

EVAL
LEN
EQS
GTS
LTS
NES
GES

LES
SUBSTR

Example

%EVAL(3*(8/5))
%LEN(First)
%EQS(AA,AA)
%GTS(y,x)
%LTS(y,x)
%NES(AA,AB)
%GES(y,y)

%LES(z,y)
%SUBSTR(abcde,2,3)

Evaluation
of Example

3h
5h
0FFFFh
0FFFFh
0h
0FFFFh
0FFFFh

0h
bcd

Description

Evaluate expression
Length of string
String equality
String greater
String less
String not equal
String greater or
equal
String less or equal
Substring

Note that these functions evaluate to hexadecimal numbers, and
that the relational functions (EQS, etc.) evaluate to 0FFFFh if
the relation holds and Oh if it does not. The parameter to EVAL
must evaluate to a number.

The result of a numeric computation done during macro processing
can be given a symbolic name with the SET function, which is
invoked in the form:

%SET (name, value)

For example:

%SET (xyz, 7+5)

sets the macro variable xyz to value 0Ch. Subsequent to the use
of SET, %xyz is equivalent to 0Ch. Similarly, the invocation:

%SET (xyz, %xyz-1)

decrements the value of the macro variable xyz.

The macro facility also supports conditional and repetitive
assembly with the control functions IF, REPEAT, and WHILE.

IF has two versions

%IF (param1) THEN (param2) ELSE (param3) FI

and

%IF (param1) THEN (param2) FI

The first parameter is treated as a truth value--odd numbers are
true and even numbers false. If the first parameter is true, the
IF expression is equivalent to the value of its second parameter;
if the first parameter is false, the IF expression is equivalent
to the value of its third parameter (or to the null string if the
third parameter is omitted). For example:

66 Assembly Language Manual

%IF (1) THEN (aa) ELSE (bb) FI

is equivalent to aa, and:

%IF (2) THEN (aa) FI

is equivalent to the null string.

The IF function can be used in conjunction with macro variables
to provide conditional assembly. Suppose a program contains a
table that is to be searched for a value at run-time. If the
table is small, a simple linear search is best; if the table is
large, a binary search is preferable. Then you could code:

%IF (%sTable GT 10)
 THEN(
 ;binary search version here
)else(
 ;linear search here
)

The macro variable %sTable would have to be defined with some
numeric value; otherwise the expansion of the IF would yield an
error.

Sometimes it is convenient to control a conditional assembly by
whether or not a symbol has been defined: in the usual case, the
symbol is not defined and one alternative is selected, but if a
definition for the symbol is found, a different alternative is
selected. The macro processor supports this capability with the
ISDEF function. ISDEF may use two forms: one tests whether a
run-time symbol (for example, a label) has been defined, and the
other tests whether a macro-time symbol has been defined. In
both cases, the result is -1 if the symbol is defined, and 0 if
the symbol is not defined. The two forms are, % ISDEF (symbol) to
check a run-time symbol, and, %*ISDEF (%symbol), to check a
macro-time symbol

Repetitive Assembly

REPEAT is used to assemble one of its parameters a specified number
of times. The form is:

%REPEAT (param1) (param2)

For example:

%REPEAT (4)
(DW 0
)

is equivalent to:

	 Macro Assembler 67

DW 0
DW 0
DW 0
DW 0

(Note that in this, and in most examples involving the macro
facility, the parentheses are the delimiters of textual
parameters, so their placement is critical.)

WHILE is used to assemble one of its parameters a variable number
of times, depending on the result of an assembly-time computation
to be performed before each repetition. The form is:

%WHILE (param1) (param2)

For example, suppose %nWords has the value 3h. Then the result
of:

%WHILE (%nWords GT 0) (%REPEAT (%nWords)
(DW %nWords
) %SET (nWords, %nWords-1))

is:

DW 3h
DW 3h
DW 3h
DW 2h
DW 2h
DW 1h

When using the control functions REPEAT and WHILE it is
sometimes desirable to explicitly terminate expansion. This can
be done with EXIT, whose invocation stops the expansion of the
enclosing REPEAT, WHILE, or macro. For example, if %n is
initially 5, then the expression.

%WHILE(%n GT 0)
 (%REPEAT (%n) (%IF (%n) THEN (%EXIT) FI DW %n
)%SET (n, %n-1)

expands to:

DW 4
DW 4
DW 4
DW 4
DW 2
DW 2

68 Assembly Language Manual

Interactive Assembly (IN and OUT)

The macro capability supports interactive assembly, based on the
two functions IN and OUT, which are used, respectively, to read
input from the keyboard during assembly and to display information
on the video display during assembly. When using IN and OUT, it
is important to understand the two-pass nature of the assembler.
Since the assembler makes two passes over the text, it expands
all macros and macro-time functions twice. This works, but the
programmer must take care:

1.	 that expressions involving macro-time variables generate the
same code or data in both passes, and

2.	 that IN and OUT are not expanded twice.

The programmer may control these effects using the specially
defined macro variables PASS1 and PASS2, whose values are:

 During First Pass During Second Pass
PASS1 | -1 | 0 |
PASS2 | 0 | -1 |

Here is an example to illustrate these facilities. Suppose you want
to prompt the user for a number at the beginning of an assembly,
then use this (input) string later. Do this by inserting, near
the beginning of the source, this code:

%IF (%PASS1 EQ -1)
 THEN (%OUT (Enter table size in bytes)
 %SET (sTable, %IN)) FI

The OUT and IN execute during the first pass only, and the user's
input becomes the value of the macro variable sTable; this can
later be referred to by %sTable.

Comments

You can write macro-time comments. The format is either:

%'text-not-containing-RETURN-or-apostrophe'

or

%'text-not-containing-RETURN-or-apostrophe RETURN

(Here RETURN designates the character generated by the Convergent
RETURN key, code 0Ah.) Since the characters of the embedded text
of a comment are consumed without any effect, comments may be
used to insert extra returns for readability in macro
definitions.

	 Macro Assembler 69

Match Operation

The special macro function MATCH is particularly useful
for parsing strings during macro processing. It permits its
parameters to be divided into two parts: a head and a tail. A
simple form is:

%MATCH (var1, var2) (text)

For example, following the expansion of:

%MATCH (var1, var2) (a, b, c, d)

The macro variable var1 has the value "a" and var2 the value "b,
c, d". This facility might be used together with LEN and
WHILE. Consider the expression:

%WHILE (%LEN(%arg) GT 0)(%MATCH (head, arg)(%arg)
 DW %head
))

If %arg is initially the text 10, 20, 30, 40, then the expansion
is:

DW 10
DW 20
DW 30
DW 40

Advanced Features

The form of MATCH just described, as well as the form of macro
definition and call described above, are actually only special
cases. In fact the separator between the parameters of MATCH or
of a macro can be a user-specified separator other than comma.
The remainder of this Section explains this and a number of
related advanced features of the macro facility. Most
programmers find the macro facilities described above quite
sufficient for their needs; what follows can be deferred to a
second reading.

The entities manipulated during macro processing are macro
identifiers,	 macro delimiters,	 and macro parameters.

A macro identifier is any string of alphanumeric characters and
underscores that begins with an alphabetic character.

A macro delimiter is a text string used as punctuation between
macro parameters. There are three kinds of macro delimiters:

1.	 An	identifier delimiter is the character "@" followed by an
identifier.

70 Assembly Language Manual

2.	 An implicit blank delimiter is any text string made up of the
"white space" characters space, RETURN, or TAB.

3.	 A literal delimiter is any other delimiter. Thus, all the
preceding examples have used the comma as a literal
delimiter.

A macro parameter is any text string in which parentheses are
balanced. The following are valid parameters:

xyz
(xyz)
((xyz)()(()))

whereas the following are not:

(
(()
xy)(

That is, parentheses are considered balanced if the number of
left and right parentheses is the same and, moreover, in reading
from left to right there is no intermediate point at which more
right than left parentheses have been encountered.

The most general form of macro definition is:

%*DEFINE (ident pattern) <locals> (body)

where:

1.	 the "*" is optional (see below for details),

2.	 ident is a macro identifier as defined above,

3.	 pattern and body are any balanced strings, and

4.	 <locals> is optional and, if present, consists of the
reserved word LOCAL and a list of macro identifiers separated
by spaces.

In all macro definitions illustrated above, the pattern has the
form:

(id1, id2, ..., idn)

and all invocations are of the form:

%ident (param1, param2 ..., paramn)

Here are examples to illustrate other cases. The definition:

	 Macro Assembler 71

%*DEFINE (DWDW A @AND B)(DW %A
 DW %B)

requires an invocation such as;

%DWDW 1 AND 2

which expands to:

DW 1
DW 2

Here the delimiter preceding the formal parameter A and following
the formal parameter B is an implicit space. The delimiter
between the A and the B is the identifier delimiter @AND.

Bracket and Escape

The macro processor has two special functions, "bracket" and
"escape," which are useful in defining invocation patterns and
parameters. The bracket function has the form:

%(text)

where text is balanced. The text within the brackets is treated
literally. Thus, given the definition:

%*DEFINE (F(A))(%(%F(2)))

the invocation:

%F(1)

expands to:

%F(2)

since the %F(2) is embedded within a bracket function and hence
not treated as another macro call. Similarly, the definition:

%*DEFINE (DWDW A AND B)(DW %A
 DW %B)

declares three formal parameters A, AND, and B (with implicit
blank delimiters), whereas the definition:

%*DEFINE (DWDW A %(AND) B)(DW %A
 DW %B)

treats the AND as a literal delimiter, so that the invocation:

%DWDW 1AND2

yields the expanded form:

72 Assembly Language Manual

DW 1
DW 2

The escape function is useful to bypass requirements for balanced
text or to use special characters like "%" or "*" as regular
characters.

The form is:

%ntext

where n is a digit, 0 to 9, and text is a string exactly n
characters long. For example, you might define:

%*DEFINE (Concat(A,B))(%A%B)

and invoke this macro by:

%Concat (DW ,%1(3+,4%1))

yielding the expansion:

DW (3+4)

MATCH Calling Patterns

Generalized calling patterns are applicable to MATCH just as they
are to macro definition and invocation. The general form is:

%MATCH(ident1 macrodelimiter ident2)(balancedtext)

For example, if "arg" is initially:

10 xyz 20 xyz 30

then:

%WHILE (%LEN(%arg) GT 0)(%MATCH(head @xyz arg)(%arg)
 DW %head
)

expands to:

DW 10
DW 20
DW 30

Processing Macro Invocations

In processing macro invocations, the assembler expands inner
invocations as they are encountered. Thus, in the invocation:

%F(%G(1))

	 Macro Assembler 73

the argument to be passed to F is the result of expanding
%G(1). The expansion of inner invocations can be suppressed
using the bracket and escape functions. Thus, with both of the
invocations:

%F(%(%G(1)))
%F(%5%G(1))

it is the literal text %G(1), not the expansion of that text,
that is the actual parameter of F.

Expanded and Unexpanded Modes

All macro processor functions can be evaluated in either of two
modes, expanded and unexpanded. When the function, invocation,
or definition is preceded by "%", the mode used is expanded; when
preceded by "%*", the mode used is unexpanded. In either case,
actual parameters are expanded and substituted for formal
parameters within the body of invoked macros. In unexpanded
mode, there is no further expansion. In expanded mode, macro
processing specified in the body of a macro is also performed.
For example, let the macros F and G be defined by:

%*DEFINE(F(X))(%G(%X))
%*DEFINE(G(Y))(%Y+%Y)

Then the invocation:

%*F(1)

expands to:

%G(1)

whereas the invocation:

%F(1)

expands to:

1+1

Nested Macro Expansion

When macro expansion is nested inner expansions are according to
the mode they specify; on completion of inner expansions,
processing continues in the mode of the outer expansion. An
alternate way of saying this is that the parameters of user-
defined macros are always processed in expanded mode. The bodies
are processed in expanded mode when a "%" invocation is used, and
in unexpanded mode when a "%*" invocation is used. It is also
possible to invoke built-in functions in either expanded or
unexpanded mode. For each built-in function, some arguments are

74 Assembly Language Manual

classified as parameter-like and therefore processed in expanded
mode, whereas others are classified as body-like and therefore
processed in expanded mode only if the invocation is with "%".

The complete table follows:

DEFINE (p-arg) (b-arg)
EQS (p-arg)
EVAL (p-arg)
GES (p-arg)
GTS (p-arg)
IF (p-arg) THEN (b-arg) ELSE (b-arg)
ISDEF (b-arg)
LEN (b-arg)
LES (p-arg)
LTS (p-arg)
MATCH (p-arg) (b-arg)
METACHAR (p-arg)
NES (p-arg)
OUT (b-arg)
REPEAT (p-arg) (b-arg)
SUBSTR (b-arg, p-arg, p-arg)
WHILE (p-arg)(b-arg)

where p-arg denotes parameter-like arguments and b-arg denotes
body-like arguments.

Assembly control directives, explained in section 10, begin with
a "$" after a RETURN.	If a control is encountered in expanded
mode, it is obeyed; otherwise the control is simply treated as
text.

A different character can be substituted for the built-in
metacharacter "%" by calling the function METACHAR, in the form:

%METACHAR (newmetacharacter)

The metacharacter should not be a left or right parenthesis an
asterisk, an alphanumeric character, or a "white space"
character.

	 Accessing Standard Services 75

9 ACCESSING STANDARD SERVICES FROM ASSEMBLY CODE

You can access all system services from modules written in
assembly language. To do so, you must follow certain standard
calling conventions, register conventions, and segment/group
conventions. If, in addition, you wish to use the system's
virtual code management services, you must follow additional
virtual code conventions.

Calling Conventions

Here we explain how CTOS™ Operating System services and standard
object module procedures are invoked from programs written in
assembly language. The following example of a call to the
standard object module procedure ReadBsRecord is helpful in
understanding this subject. The calling pattern of this
procedure, described in detail in the CTOS™ Operating System
Manual, is

ReadBsRecord (pBSWA, pBufferRet, sBufferMax
 psDataRet): ErcType

The Operating System and the standard object modules deal with
quantities of many different sizes, ranging from single-byte
quantities, such as Boolean flags, to multibyte quantities, such
as request blocks and Byte Stream Working Areas. Three of these
sizes are special: one byte, two bytes, and four bytes. Only
quantities of these sizes are passed as parameters on the stack
or returned as results in the registers. When it is necessary to
pass a larger quantity as a parameter or to return a larger
quantity as a result, a pointer to the larger quantity is used
in place of the quantity itself. A pointer is always a 4-byte
logical memory address consisting of an offset and segment base
address.

For example, ReadBsRecord takes as parameters a pointer to a Byte
Stream Work Area (pBSWA), a pointer to a buffer (pBufferRet), a
maximum buffer size (sBufferMax), and a pointer to a word
containing the size of some data (psDataRet). ReadBsRecord
returns an error status of type ErcType. The pointers are all 4-
byte quantities, the size is a 2-byte quantity, and the error
status is a 2-byte quantity. Suppose that data is allocated by
the declarations:

sBSWA EQU 130
sBuffer EQU 80

bswa DB sBSWA DUP(?)
buffer DB sBuffer DUP(?)
sData DW ?

76 Assembly Language Manual

Then to call ReadBsRecord, it is necessary first to push onto
the stack, in order, a pointer to bswa, a pointer to buffer, the
size of buffer (the constant sBuffer), and a pointer to sData.
If DS contains the segment base address for the segment
containing bswa buffer and sData, then this may be done by the
code:

PUSH DS	 ;Push the segment base address for bswa
MOV AX, OFFSET	 ;Set BX to the offset of bswa
PUSH AX	 ;Push the offset of bswa
PUSH DS	 ;Ditto for the buffer
MOV AX, sBuffer	 ;Get the buffer size into a register
PUSH AX	 ;Push this word onto the stack
PUSH DS	 ;Push the segment base address
MOV AX, OFFSET sData
PUSH AX	 ;and then the offset of sData
CALL ReadBsRecord	 ;Do the call

Note that pointers are arranged in memory with the low-order
part, the offset, at the lower memory address, and the high-order
part, the segment base, at the higher memory address. However,
the processor architecture of the Convergent Information
Processing System is such that stacks expand from high memory
addresses toward low memory addresses; hence the high-order part
of a pointer is pushed before the low-order part. Note also that
the processor has no instruction that pushes an immediate
constant: that is why the constant sBuffer must first be loaded
into a register and that register pushed onto the stack.
Finally, note that this sample code actually computes the various
pointers at run-time. It would also be possible to have the
pointers precomputed by adding to the program the declaration:

pBSWA DD bswa
pBuffer DD buffer
psData DD sData

If this were done, then the appropriate calling sequence would
be:

LES BX, pBSWA
PUSH ES	
PUSH BX	
LES BX, pBuffer
PUSH ES	
PUSH BX	
MOV AX, sBuffer
PUSH AX	
LES BX, psData
PUSH ES	
PUSH BX	
CALL ReadBxRecord

	 Accessing Standard Services 77

Note that the LES instruction loads the offset part of the
pointer into BX and the segment part into ES in a single
instruction.

Object module and system common procedures as well as procedural
references to system services must be declared EXTRN and FAR.
These declarations may not be embedded in a SEGMENT/ENDS
declaration. See line 6 of Figure 11-3.

The result returned by ReadBsRecord is a 2-byte quantity and
according to the Convergent calling conventions, is returned in
AX. If the result were a 4-byte quantity, the high-order part
would be returned in ES and the low-order part in BX.

All of the 4-byte quantities dealt with in this example are
pointers. There are many cases in which the Operating System and
standard object module procedures deal with 4-byte quantities
other than pointers, such as logical file addresses (lfa). It is
important to understand that, as far as regards calling and
register conventions and stack formats, such 4-byte quantities
are dealt with exactly as 4-byte pointers, when they are
parameters, the high-order part is pushed first and the low-order
part second; when they are results, the high-order part is
returned in ES and the low-order part is returned in BX.

There is one additional case, not illustrated by the example of
ReadBsRecord. When a parameter is a single byte, such as a
boolean flag, two bytes on the stack are actually required,
although the high-order byte of these two bytes is not used.
Thus the instruction:

PUSH BYTE PTR[BX]

adds two bytes to the stack. One of these bytes is specified by
the operand of the PUSH instruction; the other is not set and no
reference should be made to it. Similarly, when the result of a
function is a single byte, that byte is returned in AL and no
reference should be made to the contents of AH.

Register Usage Conventions

When writing in assembly language a call to a standard object
module procedure or to the Operating System, be aware of the
Convergent standard register conventions. The contents of CS,
DS, SS, SP, and BP are preserved across calls: they are the same
on the return as they were just prior to the pushing of the first
argument. It is assumed that SS and SP point, respectively, to
the base of the stack and the top of the stack, and this stack
will, in general, be used by the called service. (Do not put
temporary variables in the stack area below SS.SP; see
"Interrupts and the Stack" below for details.) These conventions
place no particular requirement on the contents of BP unless
virtual code segment management services are being used. (See

78 Assembly Language Manual

"Virtual Code Segment Management and Assembly Code" below for
details of BP usage with virtual code.) The other registers and
the flags are not automatically preserved across calls to the
Operating System or the standard object module procedures. Any
other registers which must be saved in a particular application
must be saved explicitly by the caller. Although there is not an
absolute requirement that these register usage conventions be
followed in parts of an application that do not call standard
Convergent services, failing to follow them is not recommended in
the Convergent programming environment.

Segment and Group Conventions

Main Program

A main program module written in assembly language must declare
its stack segment and starting address in a special way. This is
illustrated in the sample module of Figure 11-2. In particular:

o	 The stack segment must have the combine type Stack. (See
line 22.)

o	 The starting address must be specified in the END
statement. (See line 27.)

When the program is run, the Operating System performs the
following steps:

o	 It loads the program.

o	 It initializes SS to the segment base address of the
program's stack.

o	 It initializes SP to the top of the stack.

o	 It transfers control to the starting address with interrupts
enabled.

SS and DS When Calling Object Module Procedures

If the program calls Convergent object module procedures, there
are additional requirements. The program format used in Figure
11-2 does not suffice. A correct program is given Figure 11-3,
illustrating the following points:

o	 The stack segment must have segment name Stack, combine type
Stack, and classname 'Stack'. See line 44.

o	 Although not required, it is standard practice that user code
be contiguous in memory with Convergent code and that code be
at the front of the memory image. This is achieved if all

	 Accessing Standard Services 79

	 code segments have classname 'Code' and this class is
mentioned before any other in the module. See lines 11-12.

o	 It is desirable to avoid forward references to constants. It
is also standard, though not required, to make user constants
contiguous with Convergent constants in the memory image and
to locate constants directly after code. You can achieve
both goals by giving all constant segments the classname
'Const' and by mentioning this classname before any other
save 'Code'. See lines 17-22

o	 It is desirable to avoid forward references to data. It is
also standard, though not required, to make user data
contiguous with Convergent data in the memory image, and to
locate data directly after constants. You can achieve both
goals by giving all data segments the classname 'Data' and by
mentioning this classname before any others save 'Code' and
'Const'. See lines 27-36. Note that EXTRN declarations for
data declared in object module procedures must be embedded in
the data SEGMENT/ENDS declarations.

o	 At any time that a call is made to an object module
procedure, DS and SS must contain the segment base address of
a special group named DGroup. This group contains the Data
Const, and Stack segments, and is declared as illustrated in
line 53. In addition, at the time of a call to an object
module procedure, SP must address the top of a stack area to
be used by the called procedure. A correct initialization of
SS, SP and DS is illustrated in lines 62-68. These values
need not be maintained constantly, but, if they are changed,
they should be restored (using the appropriate top of stack
value in SP if it has changed) for any call to an object
module procedure. Note that the Operating System's interrupt
handlers save the user registers by pushing them onto the
stack defined by SS:SP. Therefore, some valid stack must be
defined at all times that interrupts are enabled.

Interrupts and the Stack

If interrupts are enabled, interrupt routines use the stack as
defined by SS and SP. Therefore you should never, even
temporarily, put data in the stack segment at a memory address
less than SS:SP.

Use of Macros

The instructions to set up parameters on the stack before a call
and to examine the result on return have a number of cases, as
discussed above. The instructions that must be executed differ
slightly according to whether a parameter is in a register, a
static variable, an immediate constant, a word, or a
doubleword. If you are programming a particular assembly module
in which not all of this variability occurs, it may be simplest

80 Assembly Language Manual

to program the required calling sequences just once, to include
them in your program as macro definitions, and to invoke them
using the assembler's macro expansion capability.

For example, the procedural interface to the Write operation is
given in the CTOS™ Operating System Manual as;

Write (fh, pBuffer, sBuffer, lfa, psDataRet): ErcType

where fh and sBuffer are 2-byte quantities and pBuffer, lfa, and
psDataRet are 4-byte quantities. The corresponding external
declaration and macro definition would be;

EXTRN Write: FAR
%*DEFINE(Write(fh pBuffer sBuffer lfa psDataRet))
 (PUSH %fh
 PUSH WORD PTR %pBuffer[2]
 PUSH WORD PTR %pBuffer[0]
 PUSH %sBuffer
 PUSH WORD PTR %lfa[2]
 PUSH WORD PTR %lfa[0]
 PUSH WORD PTR %psDataRet[2]
 PUSH WORD PTR %psDataRet[0]
 CALL Write
)

Note that the 4-byte quantities are treated slightly differently
from the 2-byte quantities, requiring first a PUSH of the high-
order word, then a PUSH of the low-order word.

Here is an example of the use of this macro with "static" actual
parameters:

fh1 DW ?
 EVEN
buffer DB 512 DUP(?)
sBuf DW SIZE buffer
pBuf DD buffer
lfa1 DD ?
sDataRet DW ?
psDataRet DD sDataRet
 .
 .
 .
 ;code to initialize fh1, buffer, and lfa1
 .
 .
 .
 %Write(fh pBuffer sBuffer lfa psDataRet)

You might, instead, want to invoke this macro with actual
parameters on the stack. Suppose that the quantities rbfh1,
rbsBuf, rbpBuf, rblfa1, and rbpsData are on the stack and that

	 Accessing Standard Services 81

the top of stack pointer is in register BX. Here is a sample
invocation:

rbfh1 EQU -6
rbsBuf EQU -8
rbpBuf EQU -10
rblfa1 EQU -14
rbpsDat EQU -18
 %Write([BP+rbfh1] [BP+rbpBuf]
 [BP+rbsBuf] [BP+rblfa1]
 [BP+rbpsData]

Virtual Code Segment Management and Assembly Code

The virtual code segment management services of the Convergent
Information Processing System permit the programmer to configure
a program (written in any of the Convergent compiled languages,
in assembly language, or in a mixture of these) into overlays.
Although data cannot be overlaid with these services, code can be
overlaid. Moreover, the run-time operations whereby code
overlays are read into memory and discarded from memory are
entirely automatic. The programmer need only specify, when
linking the program, which modules are to be overlaid, and need
make no change to the program apart from inserting at its start a
single procedure call to initialize virtual code segment
management services. (See the CTOS™ Operating System Manual for
details.)

The correct automatic operation of the virtual code facility
requires certain assumptions about stack formats and register
usage in the run-time environment to be satisfied. These
assumptions are automatically satisfied by the compiled languages
of the Convergent System; however, the assembly language
programmer must follow some simple rules if virtual code segment
management is to be used. If a program contains no calls to
overlaid modules from assembly language code or from procedures
called from assembly language code, then the presence of
assembly language code in the program has no affect on the
operation of virtual code segment management services. In this
case, there are no additional rules that the assembly language
programmer must follow.

An overlay fault is defined as a call to or return to an overlaid
module that is not in memory. An overlay fault automatically
invokes virtual code segment management services to read the
required overlay into memory and possibly to discard one or more
other overlays from memory. The virtual code segment management
services do this, in part, by examining the run-time stack.
Therefore, if there are control paths in a program such that the
stack may contain entries created by assembly language code when
an overlay fault occurs, the assembly language programmer is
subject to additional rules. These are the rules:

82 Assembly Language Manual

1.	 The register usage conventions discussed earlier must be
followed. The intervention of virtual code segment
management services preserves the registers SS, SP, DS, and
BP, and, if an overlay fault occurs during the return from a
function, preserves registers AX, BX, and ES where results
may be returned. Other registers are not, in general,
preserved, and therefore cannot be used to contain parameters
or return results.

2.	 The stack segment must be named STACK and must be part of
DGroup. (If a program is a mixture of assembly language code
and compiled code, and all code shares the same stack, this
happens automatically; if a main program is written in
assembly language, it must be done explicitly. See the
example of an assembly language main program for details.)

3.	 All procedures must be declared using the PROC and ENDP
directives. Procedure bodies may not overlap. That is, the
pattern:		

Outer PROC FAR
 ;Code of Outer
Inner PROC FAR
 ;Code of Inner
Inner ENDP	
 ;More code of Outer
Outer ENDP	

	 is not permitted and must be replaced by the pattern

Outer PROC FAR
 ;Code of Outer
 ;More code of Outer
Outer ENDP	
Inner PROC FAR
 ;Code of Inner
Inner ENDP	

	 Note that this is only a restriction on syntactic nesting;
there is no restriction on nested calls, and Outer can, in any
case, contain calls to Inner.

4.	 If all of these conventions are followed, then when control
enters an assembly language procedure, the most recent entry
on the stack is the return address. In addition to preserving
the value of BP, as discussed above, the procedure must push
this value of BP onto the stack before it makes any nested
call. No values may be pushed onto the stack between the
return address and the pushed BP. This convention enables
the virtual code segment management services to scan the stack
during an overlay fault; its violation is not detected as an
error but causes the overlaid program to fail

	 Accessing Standard Services 83

	 in unpredictable ways.	 Naturally, the pushed BP must be
popped during the procedure's exit sequence.

5.	 All code must be in a class named CODE.

6.	 The SEG operator may not be used on an operand in class CODE
nor in any segment that is part of an overlay. In
particular, an instruction such as:

	 MOV AX, SEG Procedure

	 is not permitted.

7.	 If a procedural value (that is, a value that points to a
procedure) is to be constructed, this must be done in a class
other than CODE by either:

	 pProc DD Procedure

	 or:

	 pProc DW Procedure
	 DW SEG Procedure

	 Such procedural values do not point directly at the procedure
(since the procedure may be in an overlay), but at a special
resident transfer vector created by the Linker. Such a
procedural value may be invoked by the code:

	 CALL DWORD PTR pProc

8.	 If a procedure is known to be resident, and it is desired to
address, not its entry in the resident transfer vector, but
the procedure code directly, this may be done using, in place
of SEG and OFFSET, the operators RSEG and ROFFSET. If RSEG
or ROFFSET is applied to a value in an overlay, an error is
detected during linking.

System Programming Notes

The rest of this Section describes some of the algorithms and
data structures that make up the virtual code segment management
facility. An understanding of these details is not needed by the
user of the virtual code segment management facility--they are
included for the information of the system programmer desiring a
model of the internal workings of the virtual code segment
management facility.

When you invoke the Linker, if you specify the use of overlays,
then the Linker creates in the run file a special segment in the
resident part of the program called the statics segment. This
segment contains a transfer vector (an array of 5-byte entries
called stubs with one stub for each public procedure in the

84 Assembly Language Manual

program). A stub consists of one byte containing an operation
code, either JUMP or CALL, and four bytes containing a long
address. The Linker notes each call to a public procedure in an
overlaid program and transforms it to an intersegment indirect
call through the address part of the corresponding stub.

The contents of the address part of a stub for a procedure which
is in memory (i.e., either resident or overlaid but currently
swapped in) is the actual starting address of the procedure;
thus the call of such a procedure is slower than it would be in a
nonoverlaid program by only one memory reference.

The contents of the address part of a stub for a procedure not in
memory is the address of a procedure in the virtual code segment
management facility. Thus a call of such a procedure actually
transfers to the virtual code segment management facility. Such
a call of the virtual code segment management facility is a "call
fault." When a call fault occurs, the virtual code segment
management facility reads the needed overlay into the swap
buffer. Before control is transferred to the called procedure,
two other steps are taken.

1.	 The address in all stubs for procedures in the overlay is
changed to the swapped-in address of the procedure.

2.	 If some overlays had to be deleted from the swap buffer to
make room for the new overlay, the stubs for their procedures
reset to the address of the procedure in the virtual code
segment management facility that deals with call faults. (It
is possible for an overlay to be deleted from memory even
though control is nested within it--i.e., even though a
return into it is pushed onto the stack. This situation
is handled properly: all such stacked return addresses are
modified to be the address of a procedure in the virtual code
segment management facility that subsequently swaps the
overlay back into memory when a "return fault" occurs.)

The user will observe that, in the preceding discussion, no use
is made of the first byte of a stub the operation code. This
byte is, in fact, only used for calls of procedural values. The
virtual code segment management facility arranges that the
operation code is a jump instruction for an overlay in memory;
thus an invocation of a procedural argument for such a procedure
results in a call to a jump instruction which then transfers
control to the procedure. The virtual code segment management
facility arranges that the operation code for an overlay not in
memory is a call; since the address part of such a stub is the
address of the virtual code segment management facility, the
invocation of such a procedure results instead in the activation
of the virtual code segment management facility.

	 Assembly Control Directives 85

10 ASSEMBLY CONTROL DIRECTIVES

The Convergent assembly language contains facilities to control
the format of the assembly listing and to sequence the reading of
"included" source files. These facilities are invoked by
assembly control directives. Assembly control directives must
occur on one or more separate lines within the source (i.e., not
intermixed on the same line as other source code) . An assembly
control line must begin with the character "$". Such a line may
contain one or more controls, separated by spaces. Here is an
example:

$TITLE(Parse Table Generator) PAGEWIDTH(132) EJECT

The meanings of the individual controls are described below.

EJECT

The control line containing EJECT begins a new page.

GEN

All macro calls and macro expansions, including intermediate
levels of expansion, appear in the listing.

NOGEN

Only macro calls, not expansions, are listed. However, if an
expansion contains an error, it is listed.

GENONLY

Only the final results of macro expansion, and not intermediate
expansions or calls, are listed. This is the default mode.

INCLUDE (file)

Subsequent source lines are read from the specified file until
the end of the file is reached. At the end of the included file,
source input resumes in the original file just after the INCLUDE
control line.

LIST

Subsequent source lines appear in the listing.

NOLIST

Subsequent source lines do not appear in the listing.

PAGELENGTH (n)

Pages of the listing are formatted n lines long.

86 Assembly Language Manual

PAGEWIDTH (n)

Lines of the listing are formatted a maximum of n characters
wide.

PAGING

The listing is separated into numbered pages. This is the
default.

NOPAGING

The listing is continuous, with no page breaks inserted.

SAVE

The setting of the LIST/NOLIST flag and the GEN/NOGEN/GENONLY
flag is stacked, up to a maximum nesting of 8.

RESTORE

The last SAVEd flags are restored.

TITLE (text)

The text is printed as a heading on subsequent listing pages.
The default title is the null string. The text must have
balanced parentheses. (See Section 8 for details.)

Using a Printer with Assembly Listings

The listing produced by the assembler is paginated with titles
and page numbers. Since the entire page image is formatted in
such a listing, it should be printed by APPENDing or COPYing to
[Lpt] rather than with the Executive's PRINT command. (The PRINT
command can be used to print such a listing, but only by
overriding many of its default values; these values were chosen
to make the printing of text files created with the Editor most
convenient.)

	 Sample Assembler Modules 87

11 SAMPLE ASSEMBLER MODULES

This section contains three complete sample assembler modules.
The first, Figure 11-1, is a source module of the assembler
itself. It is the module that translates the assembler's
internal error numbers into textual error messages.

The second module Figure 11-2, is a skeleton of a "standalone"
assembler main program, and illustrates how the run-time stack is
allocated in an assembler module. This example follows a bare
minimum of the standard system conventions and does not link
properly to standard object module procedures.

The third module, Figure 11-3, is an assembler main program
compatible with Convergent conventions and linkable with standard
object module procedures, as described above in Section 9,
"Accessing Standard Services from Assembly Code."

88 Assembly Language Manual

	

F
i
g
u
r
e

1
1
-
1
.

E
r
r
o
r

M
e
s
s
a
g
e

M
o
d
u
l
e

P
r
o
g
r
a
m
.

(
P
a
g
e

1

o
f

3
.
)

	 Sample Assembler Modules 89

	

F
i
g
u
r
e

1
1
-
1
.

E
r
r
o
r

M
e
s
s
a
g
e

M
o
d
u
l
e

P
r
o
g
r
a
m
.

(
P
a
g
e

2

o
f

3
.
)

90 Assembly Language Manual

Figure 11-1. Error Message Module Program. (Page 3 of 3.)

	 Sample Assembler Modules 91

F
i
g
u
r
e

1
1
-
2
.

S
t
a
n
d
a
l
o
n
e

M
a
i
n

P
r
o
g
r
a
m
.

92 Assembly Language Manual

F
i
g
u
r
e

1
1
-
3
.

C
o
n
v
e
r
g
e
n
t
-
C
o
m
p
a
t
i
b
l
e

M
a
i
n

P
r
o
g
r
a
m
.

(
P
a
g
e

1

o
f

3
.
)

	 Sample Assembler Modules 93

F
i
g
u
r
e

1
1
-
3
.

C
o
n
v
e
r
g
e
n
t
-
C
o
m
p
a
t
i
b
l
e

M
a
i
n

P
r
o
g
r
a
m
.

(
P
a
g
e

2

o
f

3
.
)

94 Assembly Language Manual

F
i
g
u
r
e

1
1
-
3
.

C
o
n
v
e
r
g
e
n
t
-
C
o
m
p
a
t
i
b
l
e

M
a
i
n

P
r
o
g
r
a
m
.

(
P
a
g
e

3

o
f

3
.
)

	 Instruction Set A-1

Appendix A: INSTRUCTION SET

Table A-3 lists the instruction set in numeric order of
instruction code. Table A-4 lists the instruction set in
alphabetical order of instruction mnemonic. This instruction set
is described in detail in the Central Processing Unit.

Legend

Each table contains seven columns.

The column labeled "Op Cd" is the operand code. "Memory
Organization" is explained in Section 6. The "Instruction"
column is the instruction mnemonic. The "Operand," if there is
one, is the operand acted upon by the instruction.

The "Summary" column contains a brief summary of each
instruction. Parentheses surrounding an item means "the contents
of." For example, "(EA)" means "the contents of memory location
EA," and "(SS)" means "the contents of register SS." The infix
operators (+, -, OR, XOR, etc.) denote the standard arithmetic or
logical operation. CMP denotes a subtraction wherein the result
is discarded and only the values of the flags are changed.
"TEST" denotes a logical "AND" wherein the result is discarded
and only the values of the flags are changed.

The "clocks" column is the clock time for each instruction. (See
Table A-1 below.) Where two clock times are given in the
conditional instructions, the first is the time if the jump (or
loop) is performed, and the second if it is not. In all
instructions with memory (EA) as one of the operands, a second
clock time is given in parentheses. This is because in all these
instructions memory may be replaced by a register. In such
cases, the faster clock time applies. Where repetitions are
possible, a second clock time is also given in parentheses, in
the form "x+y/rep", where "x" is the base clock time, "y" is the
clock time to be added for each repetition, and "rep" is the
number of repetitions.

The "flags" column enumerates the flag conditions, according to
this code:

	 S = set (to 1)
	 C = cleared (to 0)
	 X = altered to reflect operation result
	 U = undefined (code should not rely on these values)
	 R = replaced from memory (e.g., POPF)
	blank = unaffected

A-2 Assembly Language Manual

These are the flags:

0 = Overflow flag
D = Direction flag
1 = Interrupt-enable flag
T = Trap flag
S = Sign flag
Z = Zero flag
A = Auxiliary Carry flag
P = Parity flag
C = Carry flag

These symbols are used in the tables:

Symbol	 Interpretation

bAddr	 16-bit offset within a segment of a word (addressed
without use of base or indexing)

bData	 byte immediate constant

bEA	 effective address of a byte

bREG	 8-bit register (AH, AL, BH, CH, CL, DH, or DL)

CF	 value (0 or 1) of the carry flag

Ext(b)	 word obtained by sign extending byte b

FLAGS	 values of the various flags

off	 16-bit offset within a segment

Sign(w)	 word of all 0's if w is positive, all 1's if w is
negative

sba	 segment base address

SR	 segment register (CS, DS, ES, or SS)

wAddr	 16-bit offset within a segment of a word (addressed
without use of base or indexing)

wData	 word immediate constant

wEA	 effective address of a word

wREG	 16-bit register (AX, BX, CX, DX, SP, BP, SI, or DI)

	 Instruction Set A-3

Effective Address (EA) calculation time is according to Table A-1
below:

Table A-1. Effective Address Calculation Time.

EA Components

Displacement only

Base or Index only

Displacement
 +
Base or Index

Base
 +
Index

Displacement
 +
Base
 +
Index

(BX, BP, SI, DI)

(BX, BP, SI, DI)

[BP+DI],[BX+SI]

[BP+SI],[BX+DI]

[BP+DI]+DISP
[BX+SI]+DISP

[BP+SI]+DISP
[BX+DI]+DISP

Clocks*

6

5

9

7

8

11

12

*Add two clocks for segment override. Add four
clocks for each 16-bit word transfer with an
odd address.

A-4 Assembly Language Manual

Alternate Mnemonics

These instructions have synonymous alternate mnemonics:

Table A-2. Alternate Mnemonics.

Instruction

JA
JAE
JAE
JB
JB
JBE
JG
JGE
JL
JLE
JNZ
JPE
JPO
JZ
LOOPNZ
LOOPZ
REPZ
REPZ
REPNZ
SHL

Synonym

JNBE
JNB
JNC
JNAE
JC
JNA
JNLE
JNL
JNGE
JNG
JNE
JP
JNP
JE
LOOPNE
LOOPE
REP
REPE
REPNE
SAL

Description

Jump if not below or equal
Jump if not below
Jump if not carry
Jump if not above or equal
Jump if carry
Jump if not above
Jump if not less or equal
Jump if not less
Jump if not greater or equal
Jump if not greater
Jump if not equal
Jump if parity
Jump if no parity
Jump if equal
Loop (CX) times while not equal
Loop (CX) times while equal
Repeat string operation
Repeat string operation while equal
Repeat while (CX) ≠ 0 and (ZF) = 1
Byte shift EA left 1 bit

	

	 Instruction Set A-5

Table A-3. Instruction Set in Numeric Order of Instruction Code. (Page 1 of 7.)
Op
Cd

Memory
Organization

Instruc-
tion

Operand Summary Clocks Flags
ODITSZAPC

00 MOD REGR/M ADD bEA,REG (bEA)=(bEA)+(bREG) 16+EA(3) X xxxxx
01 MOD REGR/M ADD wEA,REG (wEA)=(wEA)+(wREG) 16+EA(3) X xxxxx
02 MOD REGR/M ADD REG,bEA (bREG)=(bREG)+(bEA) 9+EA(3) X xxxxx
03 MOD REGR/M ADD REG,wEA (wREG)=(wREG)+(wEA) 9+EA(3) X xxxxx
04 ADD AL,bData (AL)=(AL)+bData 4 X xxxxx
05 ADD AX,wData (AX)=(AX)+wData 4 X xxxxx
06 PUSH ES Push (ES) onto stack 10
07 POP ES Pop stack to ES 8
08 MOD REGR/M OR bEA,REG (bEA)=(bEA) OR (bREG) 16+EA(3) c xxuxc
09 MOD REGR/M OR wEA,REG (wEA)=(wEA) OR (wREG) 16+EA(3) c xxuxc
0A MOD REGR/M OR REG,bEA (bREG)=(bREG) OR (bEA) 9+EA(3) C xxuxc
0B MOD REGR/M OR REG,wEA (wREG)=(wREG) OR (wEA) 9+EA(3) C xxuxc
0C OR AL,bData (AL)=(AL) OR bData 4 c xxuxc
0D OR AX,wData (AX)=(AX) OR wData 4 C xxuxc
0E PUSH CS Push (CS) onto stack 11
0F (not used)
10 MOD REGR/M ADC EA,REG (bEA)=(bEA)+(bREG)+CF 16+EA(3) X xxxxx
11 MOD REGR/M ADC EA,REG (wEA)=(wEA)+(wREG)+CF 16+EA(3) X xxxxx
12 MOD REGR/M ADC REG,EA (bREG)=(bREG)+(bEA)+CF 9+EA(3) X xxxxx
13 MOD REGR/M ADC REG,EA (wREG)=(wREG)+(wEA)+CF 9+EA(3) X xxxxx
14 ADC AL,bData (AL)=(AL)+bData+CF 4 X xxxxx
15 ADC AX,wData (AX)=(AX)+wData+CF 4 X xxxxx
16 PUSH SS Push (SS) onto stack 11 X xxxxx
17 POP SS Pop stack to SS 8
18 MOD REGR/M SBB bEA,REG (bEA)=(bEA)-(bREG)-CF 16+EA(3) X xxxxx
19 MOD REGR/M SBB wEA,REG (wEA)=(wEA)-(wREG)-CF 16+EA(3) X xxxxx
1A MOD REGR/M SBB REG,bEA (bREG)=(bREG)-(bEA)-CF 9+EA(3) X xxxxx
1B MOD REGR/M SBB REG,wEA (wREG)=(wREG)-(wEA)-CF 9+EA(3) X xxxxx
1C SBB AL,bData (AL)=(AL)-bData-CF 4 X xxxxx
1D SBB AL,wData (AX)=(AX)-wData-CF 4 X xxxxx
1E PUSH DS Push (DS) onto stack 10
1F POP DS Pop stack to DS 8
20 MOD REGR/M AND bEA,REG (bEA)=(bEA) AND (bREG) 16+EA(3) C xxuxc
21 MOD REGR/M AND wEA,REG (wEA)=(wEA) AND (wREG) 16+EA(3) C xxuxc
22 MOD REGR/M AND REG,bEA (bREG)=(bREG) AND (bEA) 9+EA(3) C xxuxc
23 MOD REGR/M AND REG,wEA (wREG)=(wREG) AND (wEA) 9+EA(3) c xxuxc
24 AND AL,bData (AL)=(AL) AND bData 4 c xxuxc
25 AND AX,wData (AX)=(AX) AND wData 4 c xxuxc
26 ES: ES segment override 2
27 DAA Decimal adjust for ADD 4 X xxxxx
28 MOD REGR/M SUB bEA,REG (bEA)=(bEA)-(bREG) 16+EA(3) X xxxxx
29 MOD REGR/M SUB wEA,REG (wEA)=(wEA)-(wREG) 16+EA(3) X xxxxx
2A MOD REGR/M SUB REG,bEA (bREG)=(bREG)-(bEA) 9+EA(3) X xxxxx
2B MOD REGR/M SUB REG,wEA (wREG)=(wREG)-(wEA) 9+EA(3) X xxxxx
2C SUB AL,bData (AL)=(AL)-bData 4 X xxxxx
2D SUB AX,wData (AX)=(AX)-wData 4 X xxxxx
2E CS: CS segment override 2
2F DAS Decimal adjust for subtract 4 u xxxxx
30 MOD REGR/M XOR bEA,REG (bEA)=(bEA) XOR (bREG) 16+EA(3) c xxuxc
31 MOD REGR/M XOR wEA,REG (wEA)=(wEA) XOR (wREG) 16+EA(3) C xxuxc
32 MOD REGR/M XOR REG,bEA (bREG)=(bREG) XOR (bEA) 9+EA(3) C xxuxc
33 MOD REGR/M XOR REG,wEA (wREG)=(wREG) XOR (wEA) 9+EA(3) c xxuxc
34 XOR AL,bData (AL)=(AL) XOR bData 4 c xxuxc
35 XOR AX,wData (AX)=(AX) XOR wData 4 c xxuxc
36 SS: SS segment override 2
37 AAA ASCII adjust for add 4 u uuxux
38 MOD REGR/M CMP bEA,bREG FLAGS=(bEA) CMP (bREG) 9+EA X xxxxx
39 MOD REGR/M CMP wEA,wREG FLAGS=(wEA) CMP (wREG) 9+EA X xxxxx
3A MOD REGR/M CMP bREG,bEA FLAGS=(bREG) CMP (bEA) 9+EA X xxxxx

				

		

A-6 Assembly Language Manual

Table A-3. Instruction Set in Numeric Order of Instruction Code. (Page 2 of 7.)
Op
Cd

Memory
Organization

Instruc-
tion

Operand Summary Clocks Flags
ODITSZAPC

3B MOD REGR/M CMP wREG,wEA FLAGS=(wREG) CMP (wEA) 9+EA X XXXXX
3C CMP AL,bData FLAGS=(AL) CMP (bData) 4 X XXXXX
3D CMP AX,wData FLAGS=(AX) CMP (wData) 4 X XXXXX
3E DS: DS segment override 2
3F AAS ASCII adjust for subtract 4 U UUXUX
40 INC AX (AX)=(AX)+1 2 X xxxx
41 INC CX (CX)=(CX)+1 2 X xxxx
42 INC DX (DX)=(DX)+1 2 X xxxx
43 INC BX (BX)=(BX)+1 2 X xxxx
44 INC SP (SP)=(SP)+1 2 X xxxx
45 INC BP (BP)=(BP)+1 2 X xxxx
46 INC SI (SI)=(SI)+1 2 X xxxx
47 INC DI (DI)=(DI)+1 2 X xxxx
48 DEC AX (AX)=(AX)-1 2 X xxxx
49 DEC CX (CX)=(CX)-1 2 X xxxx
4A DEC DX (DX)=(DX)-1 2 X xxxx
4B DEC BX (BX)=(BX)-1 2 X xxxx
4C DEC SP (SP)=(SP)-1 2 X xxxx
4D DEC BP (BP)=(BP)-1 2 X xxxx
4E DEC SI (SI)=(SI)-1 2 X xxxx
4F DEC DI (DI)=(DI)-1 2 X xxxx
50 PUSH AX Push (AX) onto stack 11
51 PUSH CX Push (CX) onto stack 11
52 PUSH DX Push (DX) onto stack 11
53 PUSH BX Push (BX) onto stack 11
54 PUSH SP Push (SP) onto stack 11
55 PUSH BP Push (BP) onto stack 11
56 PUSH SI Push (SI) onto stack 11
57 PUSH DI Push (DI) onto stack 11
58 POP AX Pop stack to AX 8
59 POP CX Pop stack to CX 8
5A POP DX Pop stack to DX 8
5B POP BX Pop stack to BX 8
5C POP SP Pop stack to SP 8
5D POP BP Pop stack to BP 8
5E POP SI Pop stack to SI 8
5F POP DI Pop stack to DI 8
60 (not used)
61 (not used)
62 (not used)
63 (not used)
64 (not used)
65 (not used)
66 (not used)
67 (not used)
68 (not used)
69 (not used)
6A (not used)
6B (not used)
6C (not used)
6D (not used)
6E (not used)
6F (not used)
70 JO bDISP Jump if overflow 16 or 4
71 JNO bDISP Jump if no overflow 16 or 4
72 JB bDISP Jump if below 16 or 4
73 JAE bDISP Jump if above or equal 16 or 4
74 JZ bDISP Jump if zero 16 or 4
75 JNZ bDISP Jump if not zero 16 or 4

	 Instruction Set A-7

Table A-3. Instruction Set in Numeric Order of Instruction Code. (Page 3 of 7.)
Op
Cd

Memory
Organization

Instruc-
tion

Operand Summary Clocks Flags
ODITSZAPC

76 JBE bDISP Jump if below or equal 16 or 4
77 JA bDISP Jump if above 16 or 4
78 JS bDISP Jump if sign 16 or 4
79 JNS bDISP Jump if no sign 16 or 4
7A JPE bDISP Jump if parity even 16 or 4
7B JPO bDISP Jump if parity odd 16 or 4
7C JL bDISP Jump if less 16 or 4
7D JGE bDISP Jump if greater or equal 16 or 4
7E JLE bDISP Jump if less or equal 16 or 4
7F JG bDISP Jump if greater 16 or 4
80 MOD 000 R/M ADD bEA,bData (bEA)=(bEA)+bData 17+EA X XXXXX
80 MOD 001 R/M OR bEA,bData (bEA)=(bEA) OR bData 17+EA C XXUXC
80 MOD 010 R/M ADC bEA,bData (bEA)=(bEA)+bData+CF 17+EA X XXXXX
80 MOD 011 R/M SBB bEA,bData (bEA)=(bEA)-bData-CF 17+EA X XXXXX
80 MOD 100 R/M AND bEA,bData (bEA)=(bEA) AND bData 17+EA C xxuxc
80 MOD 101 R/M SUB bEA,bData (bEA)=(bEA)-bData 17+EA X XXXXX
80 MOD 110 R/M XOR bEA,bData (bEA)=(bEA) XOR bData 17+EA C XXUXC
80 MOD 111 R/M CMP bEA,bData FLAGS=(bEA) CMP bData 10+EA X XXXXX
81 MOD 000 R/M ADD wEA,wData (WEA)=(wEA)+wData 17+EA X XXXXX
81 MOD 001 R/M OR wEA,wData (wEA)=(wEA) OR wData 17+EA c xxuxc
81 MOD 010 R/M ADC wEA,wData (wEA)-(wEA)+wData+CF 17+EA X XXXXX
81 MOD 011 R/M SBB wEA,wData (wEA)=(wEA)-wData-CF 17+EA X XXXXX
81 MOD 100 R/M AND wEA,wData (wEA)=(wEA) AND wData 17+EA C XXUXC
81 MOD 101 R/M SUB wEA,wData (wEA)=(wEA)-wData 17+EA X XXXXX
81 MOD 110 R/M XOR wEA,wData (wEA)=(wEA) XOR wData 17+EA C XXUXC
81 MOD 111 R/M CMP wEA,wData FLAGS=(wEA) XOR wData 10+EA X XXXXX
82 MOD 000 R/M ADD bEA,bData (bEA)=(bEA)+bData 17+EA X XXXXX
82 MOD 001 R/M (not used)
82 MOD 010 R/M ADC bEA,bData (bEA)=(bEA)+bData+CF 17+EA X XXXXX
82 MOD 011 R/M SBB bEA,bData (bEA)=(bEA)-bData-CF 17+EA X XXXXX
82 MOD 100 R/M (not used)
82 MOD 101 R/M SUB bEA,bData (bEA)=(bEA)-bData 17+EA X XXXXX
82 MOD 110 R/M (not used)
82 MOD 111 R/M CMP bEA,bData FLAGS=(bEA) CMP bData 10+EA X XXXXX
83 MOD 000 R/M ADD wEA,bData FLAGS=(wEA)+Ext(bData) 17+EA X XXXXX
83 MOD 001 R/M (not used)
83 MOD 010 R/M ADC wEA,bData (wEA)=(wEA)+Ext(bData)+CF 17+EA X XXXXX
83 MOD 011 R/M SBB wEA,bData (wEA)=(wEA)-Ext(bData)-CF 17+EA X XXXXX
83 MOD 100 R/M (not used)
83 MOD 101 R/M SUB wEA,bData (wEA)=(wEA)-Ext(bData) 17+EA X XXXXX
83 MOD 110 R/M (not used)
33 MOD 111 R/M CMP wEA,bData FLAGS=(wEA) CMP Ext(bData) 10+EA X XXXXX
84 MOD REGR/M TEST bEA,bREG FLAGS=(bEA) TEST (bREG) 9+EA(3) C XXUXC
85 MOD REGR/M TEST wEA,wREG FLAGS=(wEA) TEST (wREG) 9+EA(3) C XXUXC
86 MOD REGR/M XCHG bREG,bEA Exchange bREG, bEA 17+EA(4)
87 MOD REGR/M XCHG wREG,wEA Exchange wREG, wEA 17+EA(4)
88 MOD REGR/M MOV bEA,bREG (bEA)=(bREG) 9+EA(2)
89 MOD REGR/M MOV wEA,wREG (wEA)=(wREG) 9+EA(2)
8A MOD REGR/M MOV bREG,bEA (bREG)=(bEA) 8+EA(2)
8B MOD REGR/M MOV wREG,wEA (wREG)=(wEA) 8+EA(2)
8C MOD 0SR R/M MOV wEA,SR (wEA)=(SR) 9+EA(2)
8C MOD 1-- R/M (not used)
8D MOD REGR/M LEA REG, EA (REG)=effective address 2+EA(2)
8E MOD 0SR R/M MOV SR,wEA (SR)=(wEA) 8+EA(2)
8E MOD -- R/M (not used)
8F MOD 000 R/M POP EA Pop stack to EA 17+EA
8F MOD 001 R/M (not used)
8F MOD 010 R/M (not used)
8F MOD 011 R/M (not used)

				

A-8 Assembly Language Manual

Table A-3. Instruction Set in Numeric Order of Instruction Code. (Page 4 of 7.)
Op
Cd

Memory
Organization

Instruc-
tion

Operand Summary Clocks Flags
ODITSZAPC

8F MOD 100 R/M (not used)
8F MOD 101 R/M (not used)
8F MOD 110 R/M (not used)
8F MOD 111 R/M (not used)
90 XCHG AX,AX NOP 3
91 XCHG AX,CX Exchange (AX), (CX) 3
92 XCHG AX,DX Exchange (AX), (DX) 3
93 XCHG AX,BX Exchange (AX), (BX) 3
94 XCHG AX,SP Exchange (AX), (SP) 3
95 XCHG AX,BP Exchange (AX), (BP) 3
96 XCHG AX,SI Exchange (AX), (SI) 3
97 XCHG AX,DI Exchange (AX), (DI) 3
98 CBW (AX)=Ext(AL) 2
99 CWD (DX)=Sign(AX) 5
9A CALL off:sba Direct FAR call 28
9B WAITX Wait for TEST signal 3+WAITX
9C PUSHF Push FLAGS onto stack 10
9D POPF Pop stack to FLAGS 8 RRRRRRRRR
9E SAHF (FLAGS)=(AH) 4 RRRRRRRRR
9F LAHF (AH)=(FLAGS) 4
A0 MOV AL,bAddr (AL)=(bAddr) 10
A1 MOV AX,wAddr (AX)=(wAddr) 10
A2 MOV bAddr,AL (bAddr)=(AL) 10
A3 MOV wAddr,AX (wAddr)=(AX) 10
A4 MOVSB Move byte string 18

(9+17/rep)
A5 MOVSW Move word string 18

(9+17/rep)
A6 CMPSB Compare byte string 22 X XXXXX

(9+22/rep)
A7 CMPSW Compare word string 22 X XXXXX

(9+22/rep)
A8 TEST AL,bData FLAGS=(AL) TEST (bData) 4 X XXUXC
A9 TEST AX,bData FLAGS=(AX) TEST (wData) 4 X XXUXC
AA STOSB Store byte string 11

(9+10/rep)
AB STOSW Store word string 11

(9+10/rep)
AC LODSB Load byte string 12

(9+13/rep)
AD LODSW Load word string 12

(9+13/rep)
AE SCASB Scan byte string 15 X XXXXX

(9+15/rep)
AF SCASW Scan word string 15 X xxxxx

(9+15/rep)
B0 MOV AL,bData (AL)=bData 4
B1 MOV CL,bData (CL)=bData 4
B2 MOV DL,bData (DL)=bData 4
B3 MOV BL,bData (BL)=bData 4
B4 MOV AH,bData (AH)=bData 4
B5 MOV CH,bData (CH)=-bData 4
B6 MOV DH,bData (DH)=bData 4
B7 MOV BH,bData (BH)=bData 4
B8 MOV AX,wData (AX)=wData 4
B9 MOV CX,wData (CX)=wData 4
BA MOV DX,wData (DX)=wData 4
BB MOV BX,wData (BX)=wData 4
BC MOV SP,wData (SP)=wData 4

					
		

	 Instruction Set A-9

Table A-3. Instruction Set in Numeric Order of Instruction Code. (Page 5 of 7.)
Op
Cd

Memory
Organization

Instruc-
tion

Operand Summary Clocks Flags
ODITSZAPC

BD MOV BP,wData (BP)=wData 4
BE MOV SI,wData (SI)=wData 4
BF MOV DI,wData (DI)=wData 4
C0 (not used)
C1 (not used)
C2 RET wData NEAR return; (SP)=(SP)+

 wData 12
C3 RET NEAR return 8
C4 MOD REGR/M LES REG,EA ES:REG=(wEA+2):(wEA) 16+EA
C5 MOD REGR/M LDS REG,EA DS:REG=(wEA+2):(wEA) 16+EA
C6 MOD 000 R/M MOV bEA,bData (bEA)=(bData) 10+EA
C6 MOD 001 R/M (not used)
C6 MOD 010 R/M (not used)
C6 MOD 011 R/M (not used)
C6 MOD 100 R/M (not used)
C6 MOD 101 R/M (not used)
C6 MOD 110 R/M (not used)
C6 MOD 111 R/M (not used)
C7 MOD 000 R/M MOV EA,wData (wEA)=wData 10+EA
C7 MOD 001 R/M (not used)
C7 MOD 010 R/M (not used)
C7 MOD 011 R/M (not used)
C7 MOD 100 R/M (not used)
C7 MOD 101 R/M (not used)
C7 MOD 110 R/M (not used)
C7 MOD 111 R/M (not used)
C8 (not used)
C9 (not used)
CA RET wData FAR return, ADD

 data to REG SP 17
CB RET FAR return 18
CC INT 3 Type 3 interrupt 52 CC
CD INT bData Typed interrupt 51 CC
CE INTO Interrupt if overflow 53 or 4 CC

(Simple execution of the instruction takes 4 clocks, and actual interrupt, 53.)
CF IRET Return from interrupt 24 RRRRRRRRR
D0 MOD 000 R/M ROL bEA,1 Rotate bEA left 1 bit 15+EA X X
D0 MOD 001 R/M ROR bEA,1 Rotate bEA right 1 bit 15+EA X X
D0 MOD 010 R/M RCL bEA,1 Rotate bEA left through

 carry 1 bit 15+EA X X
D0 MOD 011 R/M RCR bEA,1 Rotate bEA right through

 carry 1 bit 15+EA X X
D0 MOD 100 R/M SHL bEA,1 Shift bEA left 1 bit 15+EA X X
D0 MOD 101 R/M SHR bEA,1 Shift bEA right 1 bit 15+EA X X
D0 MOD 110 R/M (not used)
D0 MOD 111 R/M SAR bEA,1 Shift signed bEA

 right 1 bit 15+EA X XXUXX
D1 MOD 000 R/M ROL wEA,1 Rotate wEA left 1 bit 15+EA X X
D1 MOD 001 R/M ROR wEA,1 Rotate wEA right 1 bit 15+EA X X
D1 MOD 010 R/M RCL wEA,1 Rotate wEA left through

 carry 1 bit 15+EA X X
D1 MOD 011 R/M RCR wEA,1 Rotate wEA right through

 carry 1 bit 15+EA X X
D1 MOD 100 R/M SHL wEA,1 Shift wEA left 1 bit 15+EA X X
D1 MOD 101 R/M SHR wEA,1 Shift wEA right 1 bit 15+EA X X
D1 MOD 110 R/M (not used)
D1 MOD 111 R/M SAR wEA,1 Shift signed wEA

 right 1 bit 15+EA X XXUXX

A-10 Assembly Language Manual

Table A-3. Instruction Set in Numeric Order of Instruction Code. (Page 6 of 7.)
Op
Cd

Memory
Organization

Instruc-
tion

Operand Summary Clocks Flags
ODITSZAPC

D2 MOD 000 r/m ROL bEA,CL Rotate bEA left
 (CL) bits

20+EA
 +4/bit X X

D2 MOD 001 r/m ROR bEA,CL Rotate bEA right
 (CL) bits

20+EA
 +4/bit X X

D2 MOD 010 r/m RCL bEA,CL Rotate bEA left through
 carry (CL) bits

20+EA
 +4/bit X X

D2 MOD 011 r/m RCR bEA,CL Rotate bEA right through
 carry (CL) bits

20+EA
 +4/bit X X

D2 MOD 100 r/m SHL bEA,CL Shift bEA left
 (CL) bits

20+EA
 +4/bit X X

D2 MOD 101 r/m SHR bEA,CL Shift bEA right
 (CL) bits

20+EA
 +4/bit X X

D2 MOD 110 r/m (not used)
D2 MOD 111 r/m SAR bEA,CL Shift signed bEA

 right (CL) bits
20+EA
 +4/bit X XXUXX

D3 MOD 000 r/m ROL wEA,CL Rotate wEA left
 (CL) bits

20+EA
 +4/bit

X X
D3 MOD 001 r/m ROR wEA,CL Rotate wEA right

 (CL) bits
20+EA
 +4/bit X X

D3 MOD 010 r/m RCL wEA,CL Rotate wEA left through
 carry (CL) bits

20+EA
 +4/bit X X

D3 MOD 011 r/m RCR wEA,CL Rotate wEA right through
 carry (CL) bits

20+EA
 +4/bit X X

D3 MOD 100 r/m SHL wEA,CL Shift wEA left
 (CL) bits

20+EA
 +4/bit X X

D3 MOD 101 r/m SHR wEA,CL Shift wEA right
 (CL) bits

20+EA
 +4/bit X X

D3 MOD 110 r/m (not used)
D3 MOD 111 r/m SAR wEA,CL Shift signed wEA

 right (CL) bits
20+EA
 +4/bit X XXUXX

D4 00001010 AAM ASCII adjust for multiply 83 u xxuxu
D5 00001010 AAD ASCII adjust for divide 60 u xxuxu
D6 (not used)
D7 XLAT TABLE Translate using (BX) 11
D8 MOD -- r/m ESC EA Escape to external device 8+EA
E0 LOOPNZ bDISP Loop (CX) times while

 not zero 19 or 5
E1 LOOPZ bDISP Loop (CX) times while zero 18 or 6
E2 LOOP bDISP Loop (CX) times 17 or 5
E3 JCXZ bDISP Jump if (CX)=0 18 or 6
E4 IN AL,bPort Input from bPort to AL 10
E5 IN AX,wPort Input from wPort to AX 10
E6 OUT bPort,AL Output (AL) to bPort 10
E7 OUT wPort,AX Output (AX) to wPort 10
E8 CALL wDISP Direct near call 11
E9 JMP wDISP Direct near jump 7
EA JMP wDISP,

 wSEG Direct far jump 7
EB JMP bDISP Direct near jump 7
EC IN AL,DX Byte input from port (DX)

to REG AL
8

ED IN AX,DX Word input from port (DX)
to REG AX

8

EE OUT DX,AL Byte output (AL) to port
(DX)

8

EF OUT DX,AX Word output (AX) to port
(DX)

8

F0 LOCK Bus lock prefix 2
F1 (not used)

	 Instruction Set A-11

Table A-3. Instruction Set in Numeric Order of Instruction Code. (Page 7 of 7.)
Op
Cd

Memory
Organization

Instruc-
tion

Operand Summary Clocks Flags
ODITSZAPC

F2 REPNZ Repeat while (CX)≠0
 AND (ZF)=0 2

F3 REPZ Repeat while (CX)≠0
 AND (ZF)=1 2

F4 HLT Halt 2
F5 CMC Complement carry flag 2 X
F6 MOD 000 R/M TEST bEA,bData FLAGS=(bEA) TEST bData 10+EA C XXUXC
F6 MOD 001 R/M (not used)
F6 MOD 010 R/M NOT bEA Byte invert bEA 16+EA
F6 MOD 011 R/M NEG bEA Byte negate bEA 16+EA X XXXXS

(Note: Carry Flag is C if destination is 0.)
F6 MOD 100 R/M MUL bEA Unsigned multiply by (bEA) 71 X UUUUX
F6 MOD 101 R/M IMUL bEA Signed multiply by (bEA) 90 X UUUUX
F6 MOD 110 R/M DIV bEA Unsigned divide by (bEA) 90 U UUUUU
F6 MOD 111 R/M IDIV bEA Signed divide by (bEA) 112 U UUUUU
F7 MOD 000 R/M TEST wEA,wData FLAGS=(wEA) TEST wData 10+EA C XXUXC
F7 MOD 001 R/M (not used)
F7 MOD 010 R/M NOT wEA Invert wEA 16+EA
F7 MOD 011 R/M NEG wEA Negate wEA 16+EA X XXXXS

(Note: Carry Flag is C if destination is 0.)
F7 MOD 100 R/M MUL wEA Unsigned multiply by (wEA) 124 X UUUUX
F7 MOD 101 R/M IMUL wEA Signed multiply by (wEA) 144 X UUUUX
F7 MOD 110 R/M DIV wEA Unsigned divide by (wEA) 155 U UUUUU
F7 MOD 111 R/M IDIV wEA Signed divide by (wEA) 177 U UUUUU
F8 CLC Clear carry flag 2 C
F9 STC Set carry flag 2 S
FA CLI Clear interrupt flag 2 C
FB STI Set interrupt flag 2 S
FC CLD Clear direction flag 2 C
FD STD Set direction flag 2 C
FE MOD 000 R/M INC bEA (bEA)=(bEA)+1 15+EA X XXXX
FE MOD 001 R/M DEC bEA (bEA)=(bEA)-1 15+EA X XXXX
FE MOD 010 R/M (not used)
FE MOD 011 R/M (not used)
FE MOD 100 R/M (not used)
FE MOD 101 R/M (not used)
FE MOD 110 R/M (not used)
FE MOD 111 R/M (not used)
FF MOD 000 R/M INC wEA (wEA)=(wEA)+1 15+EA X XXXX
FF MOD 001 R/M DEC wEA (wEA)=(wEA)-1 15+EA X XXXX
FF MOD 010 R/M CALL Indirect NEAR call 13+EA
FF MOD 011 R/M CALL Indirect FAR call 29+EA
FF MOD 100 R/M JMP Indirect NEAR jump 7+EA
FF MOD 101 R/M JMP Indirect FAR jump 16+EA
FF MOD 110 R/M PUSH Push (EA) onto stack 16+EA
FF MOD 111 R/M (not used)

A-12 Assembly Language Manual

Table A-3. Instruction Set in Alphabetic Order of Instruction Mnemonic. (1 of 6.)
Instruc-

tion
Operand Summary Op

Cd
Memory

Organization
Clocks Flags

ODITSZAPC

AAA ASCII adjust for add 37 4 U uuxux
AAD ASCII adjust for divide D5 00001010 60 U xxuxu
AAM ASCII adjust for multiply D4 00001010 83 U xxuxu
AAS ASCII adjust for subtract 3F 4 U uuxux
ADC AL,bData (AL)=(AL)+bData+CF 14 4 X xxxxx
ADC AX,wData (AX)=(AX)+wData+CF 15 4 X xxxxx
ADC bEA,bData (bEA)=(bEA)+bData+CF 80 MOD 010 R/M 17+EA X xxxxx
ADC wEA,wData (wEA)=(wEA)+wData+CF 81 MOD 010 R/M 17+EA X xxxxx
ADC bEA,bData (bEA)=(bEA)+bData+CF 82 MOD 010 R/M 17+EA X xxxxx
ADC wEA,bData (wEA)=(wEA)+Ext(bData)+CF 83 MOD 010 R/M 17+EA X xxxxx
ADC bEA,REG (bEA)=(bEA)+(bREG)+CF 10 MOD regr/m 16+EA(3 X xxxxx
ADC wEA, REG- (wEA)=(wEA)+(wREG)+CF 11 MOD regr/m 16+EA(3 X xxxxx
ADC REG,bEA (bREG)=(bREG)+(bEA)+CF 12 MOD regr/m 9+EA(3) X xxxxx
ADC REG,wEA (wREG)=(wREG)+(wEA)+CF 13 MOD regr/m 9+EA(3) X xxxxx
ADD AL,bData (AL)=(AL)+bData 04 4 X xxxxx
ADD AX,wData (AX)=(AX)+wData 05 4 X xxxxx
ADD bEA,REG (bEA)=(bEA)+(bREG) 00 MOD regr/m 16+EA(3 X xxxxx
ADD wEA,REG (wEA)=(wEA)+(wREG) 01 MOD regr/m 16+EA(3) X xxxxx
ADD REG,bEA (bREG)=(bREG)+(bEA) 02 MOD regr/m 9+EA(3) X xxxxx
ADD REG,wEA (wREG)=(wREG)+(wEA) 03 MOD regr/m 9+EA(3) X xxxxx
ADD bEA,bData (bEA)=(bEA)+bData 80 MOD 000 R/M 17+EA X xxxxx
ADD wEA,wData (wEA)=(wEA)+wData 81 MOD 000 R/M 17+EA X xxxxx
ADD bEA,bData (bEA)=(bEA)+bData 82 MOD 000 R/M 17+EA X xxxxx
ADD wEA,bData FLAGS=(wEA)+Ext(bData) 83 MOD 000 R/M 17+EA X xxxxx
AND AL,bData (AL)=(AL) AND bData 24 4 c xxuxc
AND AX,wData (AX)=(AX) AND wData 25 4 c xxuxc
AND bEA,REG (bEA)=(bEA) AND (bREG) 20 MOD regr/m 16+EA(3 c xxuxc
AND wEA,REG (wEA)=(wEA) AND (wREG) 21 MOD regr/m 16+EA(3 c xxuxc
AND REG, bEA (bREG)=(bREG) AND (bEA) 22 MOD regr/m 9+EA(3) c xxuxc
AND REG,wEA (wREG)=(wREG) AND (wEA) 23 MOD regr/m 9+EA(3) c xxuxc
AND bEA,bData (bEA)=(bEA) AND bData 80 MOD 100 R/M 17+EA c xxuxc
AND wEA,wData (wEA)=(wEA) AND wData 81 MOD 100 R/M 17+EA c xxuxc
CALL. off:sba Direct FAR call 9A 28
CALL wDISP Direct NEAR call E8 11
CALL EA Indirect NEAR call FF MOD 010 R/M 13+EA
CALL EA Indirect FAR call FF MOD 011 R/M 29+EA
CBW (AX)=Ext(AL) 98 2
CLC Clear carry flag F8 2 c
CLD Clear direction flag FC 2 c
CLI Clear interrupt flag FA 2 c
CMC Complement carry flag F5 2 X
CMP AL,bData FLAGS=(AL) CMP (bData) 3C 4 X xxxxx
CMP AX, wData FLAGS=(AX) CMP (wData) 3D 4 X xxxxx
CMP bEA,bREG FLAGS=(bEA) CMP (bREG) 38 MOD regr/m 9+EA X xxxxx
CMP wEA,wREG FLAGS=(wEA) CMP (wREG) 39 MOD regr/m 9+EA X xxxxx
CMP bREG,bEA FLAGS=(bREG) CMP (bEA) 3A MOD regr/m 9+EA X xxxxx
CMP wREG,wEA FLAGS=(wREG) CMP (wEA) 3B MOD regr/m 9+EA X xxxxx
CMP bEA,bData FLAGS=(bEA) CMP bData 80 MOD 111 R/M 10+EA X xxxxx
CMP bEA,bData FLAGS=(bEA) CMP bData 82 MOD 111 R/M 10+EA X xxxxx
CMP wEA,wData FLAGS=(wEA) CMP wData 81 MOD 111 R/M 10+EA X xxxxx
CMP wEA,bData FLAGS=(wEA) CMP Ext(bData) 83 MOD 111 R/M 10+EA X xxxxx
CMPSB Compare byte string A6 22 X xxxxx

(9+22/rep)
CMPSW Compare word string A7 22 X xxxxx

(9+22/rep)
CS: CS segment override 2E 2
CWD (DX)=Sign(AX) 99 5
DAA Decimal adjust for ADD 27 4 X xxxxx

	 Instruction Set A-13

Table A-3. Instruction Set in Alphabetic Order of Instruction Mnemonic. (2 of 6.)
Instruc-

tion
Operand Summary Op

Cd
Memory

Organization
Clocks Flags

ODITSZAPC

DAS Decimal adjust for
 subtract

2F 4 U XXXXX

DEC AX (AX)=(AX)-1 48 2 X XXXX
DEC BP (BP)=(BP)-1 4D 2 X XXXX
DEC BX (BX)=(BX)-1 4B 2 X XXXX
DEC CX (CX)=(CX)-1 49 2 X XXXX
DEC DI (DI)=(DI)-1 4F 2 X XXXX
DEC DX (DX)=(DX)-1 4A 2 X XXXX
DEC bEA (bEA)=(bEA)-1 FE MOD 001 r/m 15+EA X XXXX
DEC wEA (wEA)=(wEA)-1 FF MOD 001 r/m 15+EA X XXXX
DEC SP (SP)=(SP)-1 4C 2 X XXXX
DEC SI (SI)=(SI)-1 4E 2 X XXXX
DIV bEA Unsigned divide by (bEA) F6 MOD 110 r/m 90 u uuuuu
DIV wEA Unsigned divide by (wEA) F7 MOD 110 r/m 155 u uuuuu
DS: DS segment override 3E 2
ES: ES segment override 26 2
ESC EA Escape to external device D8 MOD --- r/m 8+EA
HLT Halt F4 2
IDIV bEA Signed divide by (bEA) F6 MOD 111 r/m 112 u uuuuu
IDIV wEA Signed divide by (wEA) F7 MOD 111 R/M 177 u uuuuu
IMUL bEA Signed multiply by (bEA) F6 MOD 101 r/m 30 X UUUUX
IMULT WEA Signed multiply by (wEA) F7 MOD 101 R/M 144 X UUUUX
IN AL,DX Byte input from port

 (DX) to REG AL EC 8
IN AL,bPort Input from bPort to AL E4 10
IN AX,DX Word input from port

 (DX) to REG AX ED 8
IN AX,wPort Input from wPort to AX E5 10
INC AX (AX)=(AX)+1 40 2 X XXXX
INC BP (BP)=(BP)+1 45 2 X XXXX
INC BX (BX)=(BX)+1 43 2 X XXXX
INC CX (CX)=(CX)+1 41 2 X XXXX
INC DI (DI)=(DI)+1 47 2 X XXXX
INC DX (DX)=(DX)+1 42 2 X XXXX
INC bEA (bEA)=(bEA)+1 FE MOD 000 R/M 15+EA X XXXX
INC wEA (wEA)=(wEA)+1 FF MOD 000 R/M 15+EA X XXXX
INC SP (SP)=(SP)+1 44 2 X XXXX
INC SI (SI)=(SI)+1 46 2 X XXXX
INT bData Typed interrupt CD 51 CC
INT 3 Type 3 interrupt CC 52 CC
INTO Interrupt if overflow CE 53 or 4 CC
Simple execution of the instruction takes 4 clocks and actual interrupt, 53.)
IRET Return from interrupt CF 24 rrrrrrrrr
JA bDISP Jump if above 77 16 or 4
JAE bDISP Jump if above or equal 73 16 or 4
JB bDISP Jump if below 72 16 or 4
JBE bDISP Jump if below or equal 76 16 or 4
JC (Same as JB, JNAE.)
JCXZ bDISP Jump if (CX)=0 E3 18 or 6
JE (Same as JZ.)
JG bDISP Jump if greater 7F 16 or 4
JGE bDISP Jump if greater or equal 7D 16 or 4
JL bDISP Jump if less 7C 16 or 4
JLE bDISP Jump if less or equal 7E 16 or 4
JMP bDISP Direct NEAR jump EB 7
JMP wDISP Direct NEAR jump E9 7
JMP wDISP,

 wSEG
EA
Direct FAR jump 7

JMP EA Indirect FAR jump FF MOD 101 r/m 16+EA
JMP EA Indirect NEAR jump FF MOD 100 r/m 7+EA

A-14 Assembly Language Manual

Table A-3. Instruction Set in Alphabetic Order of Instruction Mnemonic. (3 of 6.)
Instruc-

tion
Operand Summary Op

Cd
Memory

Organization
Clocks Flags

ODITSZAPC

JNA (Same as JBE.)
JNB (Same as JAE.)
JNBE (Same as JA.)
JNG (Same as JLE.)
JNGE (Same as JL.)
JNL (Same as JGE.)
JNLE (Same as JG.)
JNO bDISP Jump if no overflow 71 16 or 4
JNP (Same as JPO.)
JNS bDISP Jump if no sign 79 16 or 4
JNZ bDISP Jump if not zero 75 16 or 4
JO bDISP Jump if overflow 70 16 or 4
JPE bDISP Jump if parity even 7A 16 or 4
JPO bDISP Jump if parity odd 7B 16 or 4
JS bDISP Jump if sign 78 16 or 4
JZ bDISP Jump if zero 74 16 or 4
LAHF (AH)=(FLAGS) 9F 4
LDS REG,EA DS:REG=(wEA+2):(wEA) C5 MOD REGR/M 16+EA
LEA REG,EA (REG)=effective address 8D MOD REGR/M 2+EA(2)
LES REG,EA ES:REG=(wEA+2):(wEA) C4 MOD REGR/M 16+EA
LODSB Load byte string AC 12

(9+13/rep)
LODSW Load word string AD 12

(9+13/rep)
LOCK Bus lock prefix F0 2
LOOP bDISP Loop (CX) times E2 17 or 5
LOOPE (Same as LOOPZ.)
LOOPNE (Same as LOOPNZ.)
LOOPNZ bDISP Loop (CX) times while

 not zero
E0

19 or 5
LOOPZ bDISP Loop (CX) times while zero E1 18 or 6
MOV bAddr,AL (bAddr)=(AL) A2 10
MOV wAddr,AX (wAddr) = (AX) A3 10
MOV AH,bData (AH)=bData B4 4
MOV AL,bAddr (AL)=(bAddr) A0 10
MOV AL,bData (AL)=bData B0 4
MOV AX,wAddr (AX)=(wAddr) A1 10
MOV AX,wData (AX)=wData B8 4
MOV BH,bData (BH)=bData B7 4
MOV BL,bData (BL)=bData B3 4
MOV BP,wData (BP)=wData BD 4
MOV BX,wData (BX)=wData BB 4
MOV CH,bData (CH)=bData B5 4
MOV CL,bData (CL)=bData B1 4
MOV CX,wData (CX)=wData B9 4
MOV DH,bData (DH)=bData B6 4
MOV DI,wData (DI)=wData BF 4
MOV DL,bData (DL)=bData B2 4
MOV DX,wData (DX)=wData BA 4
MOV bEA,bData (bEA)=(bData) C6 MOD 000 R/M 10+EA
MOV wEA,wData (wEA)=(wData) C7 MOD 000 R/M 10+EA
MOV bEA,bREG (bEA)=(bREG) 88 MOD REGR/M 9+EA(2)
MOV wEA,wREG (wEA)=(wREG) 89 MOD REGR/M 9+EA(2)
MOV wEA,SR (wEA)=(SR) 8C MOD 0SR R/M 9+EA(2)
MOV bREG,bEA (bREG)=(bEA) 8A MOD REGR/M 8+EA(2)
MOV wREG,wEA (wREG)=(wEA) 8B MOD REGR/M 8+EA(2)
MOV SI,wData (SI)=wData BE 4
MOV SP,wData (SP)=wData BC 4
MOV SR,wEA (SR)=(wEA) 8E MOD 0SR R/M 8+EA(2)

	 Instruction Set A-15

Table A-3. Instruction Set in Alphabetic Order of Instruction Mnemonic. (4 of 6.)
Instruc-

tion
Operand Summary Op

Cd
Memory

Organization
Clocks Flags

ODITSZAPC

MOVS (Use MOVSB, MOVSW.)
MOVSB Move byte string A4 18

(9+17/rep)
MOVSW Move word string A5 18

(9+17/rep)
MUL bEA Unsigned multiply by (bEA) F6 MOD 100 R/M 71 X uuuux
MUL wEA Unsigned multiply by (wEA) F7 MOD 100 R/M 124 X uuuux
NEG bEA Byte negate bEA F6 MOD 011 R/M 16+EA X XXXXS
(Note: Carry Flag is C if destination is 0.)
NEG wEA Negate wEA F7 MOD 011 R/M 16+EA X XXXXS
(Note: Carry Flag is C if destination is 0.)
NOP (Same as XCHG AX,AX)
NOT bEA Byte invert bEA F6 MOD 010 R/M 16+EA
NOT wEA Invert wEA F7 MOD 010 R/M 16+EA
OR AL,bData (AL)=(AL) OR bData 0C 4 C XXUXC
OR AX,wData (AX)=(AX) OR wData 0D 4 c XXUXC
OR bEA,bData (bEA)=(bEA) OR bData 80 MOD 001 R/M 17+EA C XXUXC
OR wEA,wData (wEA)=(wEA) OR wData 81 MOD 001 R/M 17+EA c XXUXC
OR bEA,REG (bEA)=(bEA) OR (bREG) 08 MOD REGR/M 16+EA(3) C XXUXC
OR wEA,REG (wEA)=(wEA) OR (wREG) 09 MOD REGR/M 16+EA(3) C XXUXC
OR REG,bEA (bREG)=(bREG) OR (bEA) 0A MOD REGR/M 9+EA(3) C XXUXC
OR REG,wEA (wREG)=(wREG) OR (wEA) 0B MOD REGR/M 9+EA(3) c XXUXC
OUT DX, AL Byte output (AL) to

 port (DX)
EE

8
OUT DX, AX Word output (AX) to

 port (DX)
EF

8
OUT bPort,AL Output (AL) to bPort E6 10
OUT wPort,AX Output (AX) to wPort E7 10
POP AX Pop stack to AX 58 8
POP BX Pop stack to BX 5B 8
POP BP Pop stack to BP 5D 8
POP CX Pop stack to CX 59 8
POP DI Pop stack to DI 5F 8
POP DS Pop stack to DS 1F 8
POP DX Pop stack to DX 5A 8
POP EA Pop stack to EA 8F MOD 000 R/M 17+EA
POP ES Pop stack to ES 07 8
POP SI Pop stack to SI 5E 8
POP SP Pop stack to SP 5C 8
POP SS Pop stack to SS 17 8
POPF Pop stack to FLAGS 9D 8 RRRRRRRRR
PUSH AX Push (AX) onto stack 50 11
PUSH BP Push (BP) onto stack 55 11
PUSH BX Push (BX) onto stack 53 11
PUSH CS Push (CS) onto stack 0E 11
PUSH CX Push (CX) onto stack 51 11
PUSH DI Push (DI) onto stack 57 11
PUSH DS Push (DS) onto stack 1E 10
PUSH DX Push (DX) onto stack 52 11
PUSH EA Push (EA) onto stack FF MOD 110 R/M 16+EA
PUSH ES Push (ES) onto stack 06 10
PUSH SI Push (SI) onto stack 56 11
PUSH SP Push (SP) onto stack 54 11
PUSH SS Push (SS) onto stack 16 11 X xxxxx
PUSHF Push FLAGS onto stack 9C 10
RCL bEA,1 Rotate bEA left thru

 carry 1 bit
D0 MOD 010 R/M

15+EA X X
RCL wEA,1 Rotate wEA left thru

 carry 1 bit
DI MOD 010 R/M

15+EA X X

A-16 Assembly Language Manual

Table A-3. Instruction Set in Alphabetic Order of Instruction Mnemonic. (5 of 6.)
Instruc-

tion
Operand Summary Op

Cd
Memory

Organization
Clocks Flags

ODITSZAPC

MOVS
MOVSB Move byte string A4 18
MOVSW Move word string A5 18
RCR bEA,CL Rotate bEA right thru carry

(CL) bits
D2 MOD 011 R/M 20+EA

 +4/bit
X X

RCR wEA,CL Rotate wEA right thru carry
(CL) bits

D3 MOD 011 r/m 20+EA
 +4/bit

X X

RCR bEA,1 Rotate bEA right thru carry
1 bit

D0 MOD 011 r/m 15+EA X X

RCR wEA,1 Rotate wEA right thru carry
1 bit

D1 MOD 011 r/m 15+EA X X

REP (Same as REPZ.)
REPE (Same as REPZ.)
REPNE (Same as REPNZ.)
REPNZ Repeat while (CX)≠0

 AND (ZF)=0
F2

2
REPZ Repeat while (CX)≠0

 AND (ZF)=1
F3

2
RET wData FAR return, ADD

 data to REG SP
CA

17
RET FAR return CB 18
RET NEAR return C3 8
RET wData NEAR return; (SP)=(SP)+

 (wData)
C2

12
ROL bEA,CL Rotate bEA left

 (CL) bits
D2 MOD 000 r/m 20+EA

 +4/bit
X X

ROL wEA,CL Rotate wEA left
 (CL) bits

D3 MOD 000 r/m 20+EA
 +4/bit

X X

ROL bEA,1 Rotate bEA left 1 bit D0 MOD 000 r/m 15+EA X X
ROL wEA,1 Rotate wEA left 1 bit D1 MOD 000 r/m 15+EA X X
ROR bEA,CL Rotate bEA right

 (CL) bits
D2 MOD 001 r/m 20+EA

 +4/bit
X X

ROR wEA,CL Rotate wEA right
 (CL) bits

D3 MOD 001 r/m 20+EA
 +4/bit

X X

ROR bEA,1 Rotate bEA right 1 bit D0 MOD 001 r/m 15+EA X X
ROR wEA,1 Rotate wEA right 1 bit D1 MOD 001 r/m 15+EA X X
SAHF (FLAGS)=(AH) 9E 4 rrrrrrrrr
SAL (Same as SHL.)
SAR bEA,CL Shift signed bEA right

 (CL) bits
D2 MOD 111 r/m 20+EA

 +4/bit
X XXUXX

SAR wEA,CL Shift signed wEA right
 (CL) bits

D3 MOD 111 r/m 20+EA
 +4/bit

X XXUXX

SAR bEA,1 Shift signed bEA right 1 bit D0 MOD 111 r/m 15+EA X xxuxx
SAR wEA,1 Shift signed wEA right 1 bit D1 MOD 111 r/m 15+EA X XXUXX
SBB AL,bData (AL)=(AL)-bData-CF 1C 4 X XXXXX
SBB AL,wData (AX)=(AX)-wData-CF 1D 4 X XXXXX
SBB bEA,bData (bEA)=(bEA)-bData-CF 80 MOD 011 r/m 17+EA X XXXXX
SBB bEA,bData (bEA)=(bEA)-bData-CF 82 MOD 011 R/M 17+EA X XXXXX
SBB wEA,wData (wEA)=(wEA)-wData-CF 81 MOD 011 r/m 17+EA X XXXXX
SBB wEA,bData (wEA)=(wEA)-Ext(bData)-CF 83 MOD 011 r/m 17+EA X xxxxx
SBB bEA,REG (bEA)=(bEA)-(bREG)-CF 18 MOD REG r/m 16+EA(3) X xxxxx
SBB wEA,REG (wEA)=(wEA)-(wREG)-CF 19 MOD REG r/m 16+EA(3) X XXXXX
SBB REG,bEA (bREG)=(bREG)-(bEA)-CF 1A MOD REG r/m 9+EA(3) X XXXXX
SBB REG,wEA (wREG)=(wREG)-(wEA)-CF 1B MOD REG r/m 9+EA(3) X XXXXX
SCASB Scan byte string AE 15 X XXXXX

(9+15/rep)
SCASW Scan word string AF 15 x xxxxx

(9+15/rep)
SHL bEA,CL Shift bEA left

 (CL) bits
D2 MOD 100 r/m 20+EA

 +4/bit X x

	 Instruction Set A-17

Table A-3. Instruction Set in Alphabetic Order of Instruction Mnemonic. (6 of 6.)
Instruc-

tion
Operand Summary Op

Cd
Memory

Organization
Clocks Flags

ODITSZAPC

SHL wEA,CL Shift wEA left
 (CL) bits

D3 MOD 100 R/M 20+EA
 +4/bit X X

SHL bEA,1 Shift bEA left 1 bit D0 MOD 100 R/M 15+EA X X
SHL wEA,1 Shift wEA left 1 bit D1 MOD 100 R/M 15+EA X X
SHR bEA,CL Shift bEA right

 (CL) bits
D2 MOD 101 R/M 20+EA

 +4/bit X X
SHR wEA,CL Shift wEA right

 (CL) bits
D3 MOD 101 R/M 20+EA

 +4/bit X X
SHR bEA,1 Shift bEA right 1 bit D0 MOD 101 R/M 15+EA X X
SHR wEA,1 Shift wEA right 1 bit D1 MOD 101 R/M 15+EA X X
SS: SS segment override 36 2
STC Set carry flag F9 2 S
STD Set direction flag FD 2 C
STI Set interrupt flag FB 2 S
STOSB Store byte string AA 11

(9+10/rep)
STOSW Store word string AB 11

(9+10/rep)
SUB AL,bData (AL)=(AL)-bData 2C 4 X XXXXX
SUB AX,wData (AX)=(AX)-wData 2D 4 X XXXXX
SUB bEA,bData (bEA)=(bEA)-bData 80 MOD 101 R/M 17+EA X XXXXX
SUB bEA,bData (bEA)=(bEA)-bData 82 MOD 101 R/M 17+EA X XXXXX
SUB wEA,wData (wEA)=(wEA)-wData 81 MOD 101 R/M 17+EA X XXXXX
SUB wEA,bData (wEA)=(wEA)-Ext(bData) 83 MOD 101 R/M 17+EA X XXXXX
SUB bEA,REG (bEA)=(bEA)-(bREG) 28 MOD REGR/M 16+EA(3) X XXXXX
SUB wEA,REG (wEA)=(wEA)-(wREG) 29 MOD REGR/M 16+EA(3) X XXXXX
SUB REG,bEA (bREG)=(bREG)-(bEA) 2A MOD REGR/M 9+EA(3) X XXXXX
SUB REG,wEA (wREG)=(wREG)-(wEA) 2B MOD REGR/M 9+EA(3) X XXXXX
TEST AL,bData FLAGS=(AL) TEST (bData) A8 4 X XXUXC
TEST AX,bData FLAGS=(AX) TEST (wData) A9 4 X XXUXC
TEST bEA,bData FLAGS=(bEA) TEST bData F6 MOD 000 R/M 10+EA C XXUXC
TEST wEA,wData FLAGS=(wEA) TEST wData F7 MOD 000 R/M 10+EA C XXUXC
TEST bEA,bREG FLAGS=(bEA) TEST (bREG) 84 MOD REGR/M 9+EA(3) C XXUXC
TEST wEA,wREG FLAGS=(wEA) TEST (wREG) 85 MOD REGR/M 9+EA(3) C XXUXC
WAITX Wait for TEST signal 9B 3+WAITX
XCHG AX,AX NOP 90 3
XCHG AX,BP Exchange (AX), (BP) 95 3
XCHG AX,BX Exchange (AX), (BX) 93 3
XCHG AX,CX Exchange (AX), (CX) 91 3
XCHG AX,DI Exchange (AX), (DI) 97 3
XCHG AX,DX Exchange (AX), (DX) 92 3
XCHG AX,SI Exchange (AX), (SI) 96 3
XCHG AX,SP Exchange (AX), (SP) 94 3
XCHG bREG,bEA Exchange bREG, bEA 86 MOD REGR/M 17+EA(4)
XCHG wREG,wEA Exchange wREG, wEA 87 MOD REGR/M 17+EA(4)
XLAT TABLE Translate using (BX) D7 11
XOR AL,bData (AL)=(AL) XOR bData 34 4 C XXUXC
XOR AX,wData (AX)=(AX) XOR wData 35 4 C XXUXC
XOR bEA,bData (bEA)=(bEA) XOR bData 80 MOD 101 R/M 17+EA C XXUXC
XOR wEA,wData (wEA)=(wEA) XOR, wData 81 MOD 101 R/M 17+EA C XXUXC
XOR bEA,REG (bEA)=(bEA) XOR (bREG) 30 MOD REGR/M 16+EA(3) C XXUXC
XOR wEA,REG (wEA)=(wEA) XOR (wREG) 31 MOD REGR/M 16+EA(3) C XXUXC
XOR REG,bEA (bREG)=(bREG) XOR (bEA) 32 MOD REGR/M 9+EA(3) C XXUXC
XOR REG,wEA (wREG)=(wREG) XOR (wEA) 33 MOD REGR/M 9+EA(3) C XXUXC

	 Reserved Words B-1

Appendix B: RESERVED WORDS

A	 ENDS	 JPO	 PTR
AAA	 EQ	 JS	 PUBLIC
AAD	 EQU	 JZ	 PURGE
AAM	 ES	 LABEL	 PUSH
AAS	 ESC	 LAHF	 PUSHF
ABS	 EVEN	 LDS	 RCL
ADC	 EXTRN	 LE	 RCR
ADD	 FAC	 LEA	 RECORD
AH	 FALC	 LENGTH	 REPE
AL	 FAR	 LES	 REPNE
AND	 GE	 LIST	 REPNZ
ASSUME	 GEN	 LOCK	 REPZ
AT	 GENONLY	 LODS	 RESTORE
AX	 GROUP	 LODSB	 RET
BH	 GT	 LODSW	 ROR
BL	 HIGH	 LOOP	 SAL
BP	 HLT	 LOOPE	 SAR
BX	 IDIV	 LOOPNZ	 SAVE
BYTE	 IMUL	 LOOPZ	 SBB
CALL	 IN	 LOW	 SCAS
CBW	 INC	 LT	 SCASB
CH	 INCLUDE	 MASK	 SCASW
CL	 INT	 MEMORY	 SEG
CLC	 INTO	 MOD	 SEGMENT
CLD	 IRET	 MOV	 SHL
CLI	 JA	 MOVS	 SHORT
CMC	 JAE	 MOVSB	 SHR
CMP	 JB	 MOVSW	 SI
CMPS	 JBCZ	 MUL	 SIZE
CMPSB	 JBE	 NAME	 SP
CMPSW	 JC	 NE	 SS
COMMON	 JE	 NEAR	 STACK
CS	 JGE	 NEG	 STC
CWD	 JL	 NIL	 STD
CX	 JLE	 NOGEN	 STI
DAA	 JMP	 NOLIST	 STOS
DAS	 JNA	 NOPAGING	 STOSB
DB	 JNAE	 NOT	 STOSW
DD	 JNB	 NOTHING	 SUB
DEC	 JNBE	 NOXREF	 TEST
DH	 JNC	 OFFSET	 THIS
DI	 JNE	 OR	 TITLE
DIV	 JNG	 ORG	 TYPE
DL	 JNGE	 OUT	 WAIT
DS	 JNLE	 PAGE	 WIDTH
DUP	 JNO	 PAGELENGTH	 WORD
DW	 JNP	 PAGEWIDTH	 XCHG
DWORD	 JNS	 PAGING	 XLAT
DX	 JNZ	 PARA	 XLATB
EJECT	 JO	 POP	 XOR
END	 JP	 POPF	 ?
ENDP	 JPE	 PROC	 ??SEG

