
IRIS Workstation
Software Distribution

Release GL1-W2.1

Silicon Graphics, Inc.
630 Clyde Court

Mtn. View, CA 94043
Document Number 5001-065-001-1

Copyright ® 1985 by Silicon Graphics, Inc.
All rights reserved.

This document contains proprietary informa-
tion of Silicon Graphics, Inc., and is protected
by Federal copyright law. The information
may not be disclosed to third parties or copied
or duplicated in any form, in whole or in part,
without prior written consent of Silicon Graph-
ics, Inc.

The information in this document is subject to
change without notice.

IRIS Workstation Software Distribution Release
GL1-W2.1 Document number: 5001-065-001-1

- i -

CONTENTS

1. INTRODUCTION . 1

2. UPDATING TO GL1-W2.1 . 3
2.1 Preparation . 3

2.1.1 Backing Up a System with No Tape Drive 3
2.1.2 Backing Up a System with a Tape Drive 6
2.1.3 Ensuring There Is Enough Space For The Update 8

2.2 Installation . 9
2.2.1 Software Load On A Workstation With No Tape Drive 9
2.2.2 Software Load On A Workstation With A Tape Drive. 10
2.2.3 Common Installation Procedure. 10

3. OVERVIEW . 15
3.1 Software Products. 15
3.2 Demos . 15
3.3 Gifts . 16
3.4 Special Files . 17
3.5	 Changes	 in	 Configuration	 Files. 18
3.6 Major Changes to UNIX Software Since Release 1.7. 20

3.6.1 Virtual Memory . 20
3.6.2 New Object Format. 20
3.6.3 DBX Symbolic Debugger . 20
3.6.4 FORTRAN Graphics Parameter Type Corrections 21
3.6.5 The Remote Graphics Libraries . 22
3.6.6 Dealing with Systems that Do Not Boot. 22

3.7 Bug Fixes and Enhancements Since Release 1.7 22
3.7.1 UNIX Software . 22
3.7.2 Graphics. 26

3.8 Known Problems. 27
3.9 Miscellaneous. 27

3.9.1 Determining the Software Release Version Number 27

4. REFERENCE INFORMATION. 29
4.1 Booting with new PROMs . 29
4.2 IRIS Workstation as Terminal Host . 29
4.3 IRIS Terminal Programming Environment . 29
4.4 The IRIS Terminal Emulator . 30
4.5 Serial Ports . 30

4.5.1 Port 2 DTR . 30
4.5.2 Connecting CRTs and Printers to the Workstation 30
4.5.3 Hardware and Software Names for Serial Ports 32
4.5.4 Serial Ports for Non-login Use. 33
4.5.5 Setting the Baud Rate for Printers . 33

4.6 Modem Control. 35
4.7 Recovering Systems that Do Not Boot . 35

- ii -

4.7.1 Recovery with INIT . 36
4.7.2 Recovery by Booting from the Second Disk 41
4.7.3 Creating a Bootable and Using It for Recovery 43

4.8 Security . 45

Appendices

Appendix A System Administration

Appendix B Stand-alone Disk Formating
Fex Format and exercise a Vertex disk
Ipfex Format and exercise an Eagle disk

Appendix C New Manual Pages
ADB(1) Debugger
ARCH(1D) Display a simulated architectural model
CAR(1D) Display of car body in wireframe & surface form
CC(1) Compiler for C, Pascal, and FORTRAN
CUBE(1D) Real-time display of famous cube puzzle
CURVE(1D) Fast interactive cubic curve display
DBX(1) Source level debugger
DOG(1)	 Cooperative	or	competitive	flight	simulator	using	the	ethernet
FLIGHT(1D)	 Simulate	 the	 flight	 of	 any	 of	 several	 aircraft
FLOAD(1)	 Initialize	 floating-point	 processor
FLOW(1D)	 Display	 of	 complex	 scientific	 data	 base
HEME(1D) Three dimensional display of a molecule
IIB(1L) Initialize ib driver (IEEE-488)
IOSTAT(1) Report I/O statistics
JET(1D)	 Depthcued	 wireframe	model	 of	 the	 f18	 jet	 fighter
LD(1) Link editor
LIBRARY(1) Create FORTRAN or Pascal library
MKBOOT(1) Make a bootable tape
NEWFS(1)	 Create	 a	 new	 file	 system
PATRAN(1D) The space shuttle using PATRAN
PS(1) Process status
RESHAPE(1) Reshape the console textport
ROBOT(1D) Control a robot arm
SGILABEL(1) Print the disk’s label
SHUTTLE(1D) PATRAN model of the shuttle
SMT(1) Streaming magnetic tape manipulation program
TPBLANK(1) Disable updating the textport
TPON(1) Enable updating the textport
UPTIME(1) Print length of time system has been up
VMSTAT(1) Report virtual memory statistics
W(1) Who is on and what are they doing
WSIRIS(1) Emulate an IRIS terminal with a workstation
IBTAB(3L)	 Package	 for	 dealing	 with	 ibtab	 files	 (IEEE-488)
A.OUT(4) Assembler and link editor output

- iii -

IB(4) IEEE 488 interface
SMTIO(4) Streaming magnetic tape interface
STAB(4) Symbol table types
IBTAB(5L)	 Format	 of	 ibtab	 file
AUTOCONF(7)	 Diagnostics	 from	 the	 autoconfiguration	 code
DRUM(7) Paging device information
DSD(7)	 Qualogy	 5217	 st-506	 disk/tape/floppy	 controller
DUART(7) On-board serial ports
FLOPPY(7)	 Qualogy	 5217	 st-506	 disk/tape/floppy	 controller
IPH(7) Interphase 2190 smd disk controller
MEM(7) Main memory
NULL(7) Data sink
PTY(7) Pseudo terminal driver
QIC(7) Qualogy 5217 st-506 disk/tape controller
CIB(8) Ib driver control program (IEEE-488)
DIB(8) Dump ib driver data structures (IEEE-488)
TIB(8) Trace ib driver printouts (IEEE-488)

Appendix D Excelan Ethernet Board Address Change Procedure

Release GL1-W2.1

1. INTRODUCTION

This document describes Release GL1-W2.1 of the IRIS workstation software.
Release 2.1 is an update to Release 1.7 IRIS workstation software and includes
the UNIX† operating system and IRIS graphics library. In this document “Release
2.1” and “2.1” are used as a short-hand for “Release GL1-W2.1”.

Silicon Graphics Inc. (SGI) has found the ethernet hardware performs more
reliably when its bus address is set to “0x7ffc”. This new address was
compiled into the kernel for Release 2.1 on the IRIS 1400. This change is not
necessary for the IRIS 1500. Before booting your IRIS 1400 workstation with the new
software, you must change the bus address of the ethernet board. This involves
inserting “jumpers” onto the ethernet board. Instructions to perform this
operation appear in Appendix D. If you would rather that SGI perform these
steps, call the SGI Geometry Hotline telephone number listed below.

There are four chapters and four appendices in this document.

Chapter 1 contains this introduction.

Chapter 2 contains information on how to load and install the 2.1 software
from the distribution tape.

Chapter 3 describes the differences between Releases 1.7 and 2.1.

Chapter 4 contains general information.

Appendix A contains updated information on system administration.

Appendix B contains information on stand-alone disk formating.

Appendix	 C	 contains	 information	 on	 new	 or	 significantly	 changed	 manual	
pages.

Appendix D contains information on the Excelan ethernet board address
change procedure.

The information included here is intended as a supplement to the IRIS
Workstation Guide, which includes detailed information about the workstation
and UNIX system administration and usage.

† UNIX is a trademark of AT&T Bell Labs.

2 IRIS WORKSTATION

Release GL1-W2.1

INTRODUCTION

SGI provides a comprehensive product support and maintenance program for
the IRIS terminal and workstation. For further information contact the SGI
Geometry Hotline:

SGI Geometry Hotline
(800) 252-0222
(800) 345-0222
(415) 962-0606

North America except California (toll-free)
California (toll-free)
Worldwide (collect)

Release GL1-W2.1

2. UPDATING TO GL1-W2.1

This chapter provides instructions for reading the new software off the update
distribution tape and installing it on workstations running older versions of
software. It also includes instructions for installing the update over the
network, from a workstation with a tape drive to a workstation that has no
tape drive. If you have a workstation that has no tape drive, note that you
must update that workstation before applying the update to the workstation
with a tape drive. In the event you have more than one machine with no tape
drive, you must update all of them before updating the workstation that has a
tape drive.

Most	 new	 files	 from	 the	 tape	 directly	 overwrite	 the	 old	 versions	 on	 the	 disk.	
There	 are	 two	 categories	 of	 files	 that	 are	 not	 directly	 overwritten:	 site-
dependent	 system	 configuration	 files,	 and	 programs	 that	 may	 be	 executing	 as	
the update occurs. The system administrator will be able to perform
appropriate	 editing	 of	 the	 configuration	 files;	 installating	 executing	 programs	 is	
handled by a script supplied on the tape.

In updating from version W1.7 to version W2.1, it is necessary to recompile all
user programs in order to run under the new version of the operating system.

The distribution tape contains the standard system software. Optional
software is delivered on separate tapes with appropriate installation instruc-
tions.

If a problem arises at any step of the update process, determine and correct the
cause of the problem before proceeding. If you are unable to determine the
cause of the problem, contact the Geometry Hotline. Failure to successfully
perform any step can render the system unusable.

2.1 Preparation

This	 section	 provides	 procedures	 for	 backing	 up	 your	 file	 system	 and	 for	
providing enough space for the new release of software. First back up any
systems with no tape drive, then back up the system(s) with tape drive(s).
Afterward, the procedure for ensuring that there is enough space for the
update (Section 2.1.3) should be followed for each system that will be updated.

2.1.1 Backing Up a System with No Tape Drive

This procedure requires that the system with no tape drive, referred to here as
system “B”, can access another workstation over the network, called system

4 IRIS WORKSTATION

Release GL1-W2.1

UPDATING TO GL1-W2.1

“A”, and that system A has a tape drive installed.

1. System A must be in multi-user mode.

2. Make sure there are no other users on system B.

3. Reboot system B and leave it in single user mode:

/etc/reboot -q

4.	 The	 standard	 configuration	 files	 are	 designed	 to	 perform	 a	 file	
system check automatically when the system comes up in single-
user	 mode.	 On	 system	 B,	 if	 the	 configuration	 files	 have	 been	
altered,	 or	 if	 for	 some	 reason	 the	 file	 system	 check	 is	 not	 done,	
initiate one manually:

/etc/fsck

 Correct any errors that are found.

5. Bring system B to multi-user mode and log in as root.

6. Back up the system. You can back up the entire system on one tape
if	 it	 will	 fit;	 otherwise,	 back	 up	 the	 root	 file	 system	 on	 one	 tape	 and	
the /usr	 file	 system	 on	 another.	 Three	 procedures	 follow.	 The	 first	
backs up the entire system on a tape. This is followed by two
procedures:	 backing	 up	 only	 the	 root	 file	 system	 and	 backing	 up	
only	 the	 /usr	 file	 system.

 Backing Up The Entire System To One Tape

A. Install a tape cartridge in system A.

B.	 On	 system	 B,	 change	 to	 the	 root	 of	 the	 file	 system.

cd /

C.	 On	 system	 B,	 mount	 the	 /usr	 file	 system.

mount /dev/md0c /usr

or, for model the 1500:

/etc/mount /dev/ip0c /usr

	 Mount	 any	 other	 file	 systems	 on	 the	 system	 as	 in	 the	
previous step.

Release GL1-W2.1

 IRIS WORKSTATION 5 UPDATING TO GL1-W2.1

D. On system B, begin the transfer.

cpio -0a1 . | xx [name of system A] dd ibs=20b\
 obs=600b of=/dev/rmt1

 Backing Up Only the Root File System to One Tape

A.	 On	 system	 B,	 unmount	 the	 user	 file	 system	 by	 typing:

/etc/umount /dev/md0c

or, for model 1500 users:

/etc/umount /dev/ip0c

B.	 If	 you	 have	 any	 additional	 mountable	 file	 systems	 they	
should	 be	 unmounted.	 Change	 to	 the	 root	 of	 the	 file	
system.

cd /

C. Install a tape cartridge in system A.

D.	 On	 system	 B,	 back	 up	 the	 root	 file	 system:

cpio -0a1 . | xx [name of system A] dd ibs=20b\
 obs=600b of=/dev/rmt1

 Backing Up Only the /usr File System to One Tape

A. Install a tape cartridge in system A.

B.	 On	 system	 B,	 mount	 the	 user	 file	 system:

/etc/mount /dev/md0c /usr

or, for model 1500 users:

/etc/mount /dev/ip0c /usr

C.	 On	 system	 B,	 back	 up	 the	 /usr	 file	 system:

cd /usr
cpio -0a1 . | xx [name of system A] dd ibs=20b\
 obs=600b of=/dev/rmt1

6 IRIS WORKSTATION

Release GL1-W2.1

UPDATING TO GL1-W2.1

D.	 If	 you	 have	 any	 additional	 mountable	 file	 systems	 they	
should now be backed up in a similar way.

2.1.2 Backing Up a System with a Tape Drive

1. Make sure there are no other users on the system.

2. Reboot the system to leave it in single user mode:

/etc/reboot -q

3.	 The	 standard	 configuration	 files	 are	 designed	 to	 perform	 a	 file	
system check automatically when the system comes up in single-
user	 mode.	 If	 the	 configuration	 files	 have	 been	 altered,	 or	 if	 for	
some	 reason	 the	 file	 system	 check	 is	 not	 done,	 initiate	 one	manually:

/etc/fsck

 Correct any errors that are found.

4. Bring the system to multi-user mode and log in as root.

5. Back up the entire system. If you do not have a standard procedure
for backup, follow this procedure (assuming a cartridge tape drive is
installed):

A.	 Unmount	 the	 user	 file	 system	 by	 typing:

/etc/umount /dev/md0c

or, for model 1500 users:

/etc/umount /dev/ip0c

B.	 If	 you	 have	 any	 additional	 mountable	 file	 systems	 they	
should be unmounted.

C.	 Install	 a	 tape	 cartridge	 and	 back	 up	 the	 root	 file	 system:

tar -c /

 or:

find / -print | cpio -ovh1

Release GL1-W2.1

 IRIS WORKSTATION 7 UPDATING TO GL1-W2.1

D.	 Mount	 the	 user	 file	 system	 again:

/etc/mount /dev/md0c /usr

E.	 Back	 up	 the	 file	 system:

tar -c /usr

 or:

find /usr -print | cpio -ovh1

F.	 If	 you	 have	 any	 additional	 mountable	 file	 systems	 they	
should now be backed up.

8 IRIS WORKSTATION

Release GL1-W2.1

UPDATING TO GL1-W2.1

2.1.3 Ensuring There Is Enough Space For The Update

Make sure there is enough space to read in the update tape. This is done by
comparing the size of each of the major directories on the tape (given in the
table below) with the size of those directories on your system. If the directory
on	 the	 tape	 is	 significantly	 larger,	 the	 increase	 in	 size	 must	 be	 available	 as	 free	
space.	 The	 totals	 of	 the	 increases	 for	 the	 directories	 on	 each	 file	 system	 (root	
and	 /usr)	 will	 indicate	 how	 much	 tree	 space	 should	 be	 available	 on	 that	 file	
system.	 If	 you	 have	 added	 files	 to	 any	 of	 the	 listed	 directories,	 their	 sizes	must	
be taken into account.

Note that if a directory on the tape is smaller than the directory on the disk,
the apparent “extra space” will not be available while reading in the tape. This
is	 because	 the	 files	 on	 the	 disk	 will	 still	 exist	 as	 the	 tape	 is	 being	 read.

If	 the	 calculations	 show	 that	 more	 free	 space	 is	 required,	 existing	 disk	 files	
must	 be	 deleted	 on	 the	 appropriate	 file	 system	 (root	 or	 /usr). (Make sure that
you	 have	 a	 good	 backup	 of	 the	 files	 you	 delete.)

Space required
Directory Blocks (kb)

/bin
/dev
/etc
/kernels
/lib
/stand
/usr/adm
/usr/bin
/usr/dict
/usr/games
/usr/include
/usr/lib
/usr/local
/usr/mail
/usr/man
/usr/news
/usr/people
/usr/preserve
/usr/pub
/usr/spool

2830
7

1156
690
405
141
10

4238
192

1330
465

3643
5
1

2035
1
6
1
1

26

To determine how much space is presently being used on your system the
following commands may be issued:

Release GL1-W2.1

 IRIS WORKSTATION 9 UPDATING TO GL1-W2.1

du -s /bin /crash /dev /ate /kernels /lib /stand /usr/adm

du -s /usr/bin /usr/dict /usr/games /usr/include /usr/lib

du -s /usr/local /usr/mail /usr/man /usr/news /usr/people

du -s /usr/preserve /usr/pub /usr/spool

2.2 Installation

Installation differs slightly between a workstation with no tape drive and one
with a tape drive. It differs in how the data is read onto the disk (the software
load), and occurs at the beginning of the installation procedure. The software
load procedure differs, but the remaining part of the procedure is identical for
systems with and without tape drives. Execute the appropriate software load
for the machine at hand, the follow the instructions common to both types of
machine in Section 2.2.3. The software installation should be performed on all
workstations with no tape drive before it is performed on the workstation with
a tape drive. This is because of incompatibilities between the new kernel
(version 2.1) and the old kernel (version 1.7).

2.2.1 Software Load On A Workstation With No Tape Drive

1. Make sure that the system is running in the normal mode as root:

A. The system is multi-user mode.

B.	 The	 user	 file	 system,	 /usr, is mounted.

C. You are logged in as root.

D. You are in the root directory, /.

2. Make sure system A is in multi-user mode with.

3. Insert the 2.1 update tape into the system A tape drive.

4. Read in the data by typing the following on system B:

(xx [name of system A] dd ibs=600b obs=20b if=/dev/rmt1) |
 cpio -iduv

 It will take 20 minutes or more to read in the tape.

5. Proceed to Section 2.2.3.

10 IRIS WORKSTATION

Release GL1-W2.1

UPDATING TO GL1-W2.1

2.2.2 Software Load On A Workstation With A Tape Drive

Caution

Be sure to follow the instructions in this section only after updating any work-
stations that do not have a tape drive.

1. Make sure that the system is running in the normal mode as root:

A. The system is multi-user mode.

B.	 The	 user	 file	 system,	 /usr, is mounted.

C. You are logged in as root.

D. You are in the root directory, /.

2. Put the update tape in the tape drive and read it in:

cpio -ihduv1

 It will take 20 minutes or more to read in the tape.

2.2.3 Common Installation Procedure

1.	 There	 is	 a	 shell	 script	 (it	 was	 read	 from	 the	 tape)	 that	 verifies	 the	
existence	 of	 certain	 critical	 files.	 These	 files	 must	 be	 present	 before	
the system is rebooted, or the system may not come back up again.
Run the script by typing:

/verify2.0

 (This script is valid for release 2.1). If any errors are reported, do
not continue with the next step. The problem must be solved before
the system can be rebooted. If you cannot solve the problem, seek
help by calling Silicon Graphics at the one of the numbers listed on
page 2 of this manual.

2. If there is an older version of the vmunix kernel in the root
directory, move it out of the way

mv /vmunix /ovmunix
mv /vmunix1 /ovmunix1

3. Install the new kernel:

cp /kernels/vmunix /vmunix

Release GL1-W2.1

 IRIS WORKSTATION 11 UPDATING TO GL1-W2.1

cp /kernels/vmunix1 /vmunix1
cp /vmunix /defaultboot

4. Take the system down (after making sure that there is no activity
such as other users working) by typing the following:

/etc/reboot -q

5. If your system is a 1400 you must now change the Ethernet bus
address. Follow the instructions in Appendix D or contact the
Hotline.

6. Reboot the system with the new kernel. The method for booting
depends on the model of the system you have (the PROMs differ).

 On a 1400 with PROMs version less than “3.0”, type the following:

d

 On a 1500 and 1400s with PROMs version “3.0” or greater, type the
following:

b

7.	 The	 standard	 distribution	 configuration	 files	 are	 designed	 to	 perform	
a	 file	 system	 check	 when	 the	 system	 comes	 up.	 If	 the	 file	 system	
check has not been automatically performed, initiate one manually.
Correct any errors that appear:

/etc/fsck

8. There will be a shell script in the root directory that performs
various “cleanup” functions after the update tape is read in.
Execute it by typing:

/update2.0 model

 where model is either 1400 or 1500. (This script is valid for release
2.1). This script will install the programs that have been protected
from being overwritten, “ranlib” the new libraries, delete some old
extraneous versions of programs and libraries from the disk, save
the	 old	 versions	 of	 configuration	 files,	 and	 make	 sure	 the	 proper	
devices are present. This script will normally inform you of errors,
or that it has completed successfully.

12 IRIS WORKSTATION

Release GL1-W2.1

UPDATING TO GL1-W2.1

9.	 Update	 the	 configurations	 files.	 Following	 is	 a	 list	 of	 file	 names	 that	
may	 need	 to	 be	 altered	 with	 site-specific	 information.

/.cshrc /.login
/.logout	 /.profile

/etc/TZ /etc/bcheckrc
/etc/brc /etc/checklist
/etc/cshrc /etc/gettydefs
/etc/group /etc/inittab
/etc/motd /etc/passwd
/etc/profile	 /etc/rc
/etc/sys_id /etc/termcap
/etc/ttytype

/usr/lib/Mail.help.~ /usr/lib/Mail.help
/usr/lib/Mail.rc /usr/lib/acct/holidays
/usr/lib/crontab

/usr/lib/uucp/L-devices /usr/lib/uucp/L-dialcodes
/usr/lib/uucp/L.cmds /usr/lib/uucp/L.sys
/usr/lib/uucp/USERFILE

Configuration	 files	 that	 were	 left	 in	 standard	 distribution	 form	 under	 the	
previous release can be left in standard form in the new release as well.
Changes	 that	 were	 made	 in	 the	 configuration	 files	 under	 the	 previous	
release should now be made in the new versions.

The	 old	 versions	 of	 the	 configuration	 files	 were	 saved	 during	 the	 execution	
of the “update2.0” script by appending a dot to the name, before moving
the	 new	 version	 into	 place.	 Thus	 for	 each	 of	 these	 files,	 a	 side-by-side	
comparison can be made to indicate what changes are necessary. See diff
(1).

10.	 Verify	 that	 critical	 files	 are	 present:

/verify2.0

 If any errors appear, make sure you correct them before proceeding.

11. Reboot the system again to ensure proper operation. On a 1400
with PROMs version less than “3.0”, type the following:

/etc/reboot -q
d

 On a 1500 and 1400s with PROMs version “3.0” or greater, type the
following:

Release GL1-W2.1

 IRIS WORKSTATION 13 UPDATING TO GL1-W2.1

/etc/reboot -q
b

12. Bring the system up multi-user.

13. Verify that the system is functioning correctly.

14.	 The	 files	 in	 the	 above	 list	 are	 renamed	when	 the	 new	 versions	 of	 the	
files	 are	 loaded.	 The	 older	 files	 have	 a	 “.”	 appended	 to	 the	 name.	
Once	 the	 system	 is	 up,	 clean	 up	 by	 removing	 the	 old	 configuration	
files	 whose	 names	 end	 with	 “.”.

15.	 At	this	point	you	can	restore	any	files	that	were	deleted	to	make	space	
during the preparation for installing the update.

16. Recompile all user object modules, libraries and programs.

17. There is a script on the tape that checks for “duplicate” executable
files	 that	 exist,	 under	 the	 same	 name,	 in	 more	 than	 one	 directory	 in	
the search path. This indicates that an old version remains, and
needs to be removed. For each “duplicate” found, the script will
produce	 an	 “ls	 –l”	 listing,	 showing	 the	 age	 of	 the	 file.	 In	 general,	
the	 older	 of	 a	 set	 of	 two	 or	 more	 files	 should	 be	 removed,	 but	 the	
system	 administrator	 should	 verify	 this	 for	 each	 file	 the	 script	 finds.	
To run the script, type:

/dup2.0

 while in multi-user mode. (This script is valid for release 2.1).

Release GL1-W2.1

Release GL1-W2.1

3. OVERVIEW

This chapter contains general information about this release, including a
comparison	 of	 Release	 1.7	 to	 Release	 2.1	 and	 known	 deficiencies	 in	 Release	 2.1.

3.1 Software Products

This release is composed of the following software products:

Product Status
UNIX System V with virtual memory
XNS Ethernet communications & serial comm.
IRIS “C” Graphics Library
IRIS FORTRAN Graphics Library
IRIS Remote “C” Graphics Library
IRIS Remote FORTRAN Graphics Library
IP/TCP Ethernet communications
Fortran Compiler
Pascal Compiler
IRIS Terminal Programming Environment
Reconfigurable	 Kernel

Included
Included
Included
Included
Included
Included
Optional
Optional
Optional
Optional
Optional

The IRIS workstation can act as a host to IRIS terminals. The two machines
communicate using one of the communications facilities. Refer to the IRIS
Workstation Guide for more information.

Using the IRIS Terminal Programming Environment, you can reprogram the
standard graphics library. This allows you to add routines to the terminal
program that can be called by the host. You can also add interactive code
segments that run locally, eliminating network and remote host delays.

The	 Reconfigurable	 Kernel	 allows	 you	 to	 add	 new	 device	 drivers	 to	 UNIX.

3.2 Demos

The directory /usr/people/demos contains programs that demonstrate some of
the many capabilities of the IRIS workstation. The programs also demonstrate

16 IRIS WORKSTATION

Release GL1-W2.1

OVERVIEW

some	 uses	 of	 the	 IRIS	workstation;	 some	 are	 actually	 used	 by	 SGI	 customers	 in	
their work.

There is documentation on the demos in Appendix C of this release notice and
also in Section 1 of the the on-line manual.

3.3 Gifts

The directory /usr/people/gifts contains the sources to unsupported programs
from SGI. Many of these programs include useful techniques that can save
you the trouble of re-inventing them. The following sources are supplied:

1. 4.2.bit.c Bit-wise operations for FORTRAN.

2. color.c Compose colors by varying the amounts of the three primary
colors: red, green, and blue. Once the desired color has
been created, the C or FORTRAN code to generate it can be
displayed.

3. colors.c Similar to color but up to eight colors can be displayed
simultaneously for comparison.

4. cube.c A program, similar to planets, that can display, rotate, trans-
late, and scale a cube.

5. fan.c Display a fan of many colors.

6. gcmd.c Issue some simple graphics commands such as cmov, char-
str, clkoff, etc.

7. gplanes.c Display the number of available bitplanes.

8. hyper.c A program, similar to planets, that can display, rotate, trans-
late, and scale n-dimensional cubes (hypercubes).

9. ndcube.f A FORTRAN program, similar to hyper.c, that can display,
rotate, translate, and scale n-dimensional cubes (hyper-
cubes).

10. planets.c The planets program that displays a solar system in motion,
complete with moons and a space ship.

11. planets.f The FORTRAN version of the planets program.

12. quad.c Display four ellipses.

13. setdate.c Allows you to set the system date with the mouse.

14. sqiral.c Display a square spiral made up of 500 segments that
demonstrates the speed of the workstation in displaying
complex objects.

Release GL1-W2.1

 IRIS WORKSTATION 17 OVERVIEW

15. track.c Display a square that tracks the cursor as the mouse is
moved.

16. vms.bit.c More bit-wise operations for FORTRAN.

3.4 Special Files

This	 section	 provides	 a	 list	 of	 the	 special	 files	 in	 /dev and a short description
of	 each	 file.

1. console The console terminal (IRIS).

2.	 floppy	 The	 optional	 floppy	 disk	 drive.

3. drum Paging device (used for virtual memory).

4. kmem Kernel memory.

5.	 md0[a-h]	 Disk	 0	 file	 systems	 (1400	 only).

6.	 md1[a-h]	 Optional	 disk	 1	 file	 systems	 (1400	 only).

7.	 ip0[a-h]	 Disk	 0	 file	 systems	 (1500	 only).

8.	 ip1[a-h]	 Optional	 disk	 1	 file	 systems	 (1500	 only).

9. mem Memory.

10. mt1 Cartridge magnetic tape.

11. nrtape Cartridge magnetic tape (no rewind on open or close).

12. null The null device (zero length on input, data sink on output).

13. pty? Master pseudo tty devices.

14.	 rmd0[a-h]	 Disk	 0	 file	 systems	 raw	 devices	 (1400	 only).

15.	 rmd1[a-h]	 Optional	 disk	 1	 file	 systems	 raw	 devices	 (1400	 only).

16.	 rip0[a-h]	 Disk	 0	 file	 systems	 raw	 devices	 (1500	 only).

17.	 rip1[a-h]	 Optional	 disk	 1	 file	 systems	 raw	 devices	 (1500	 only).

18. rmt1 Cartridge magnetic tape (treated as a blocked device).

19. rqic Cartridge magnetic tape (treated as a blocked device).

20. rmt2 Cartridge magnetic tape, no rewind on open or close (treated
as a blocked device).

18 IRIS WORKSTATION

Release GL1-W2.1

OVERVIEW

21. swap Swap device.

22. syscon System console (usually linked to console).

23. systty System console (usually linked to console).

24. tty One’s own tty device.

25. ttyd[123] Serial tty ports for terminals, printers, and modems. They
can each be directly connected to a modem or through a null
modem to a terminal or printer.

26. ttym2 Serial tty port 3 with modem control (peripheral device must
supply DSR, or DTR through a null modem, for device port
to be opened by program). If ttym2 is used, then ttyd2 must
not be used and vice versa.

27. ttyn* XNS ethernet ports.

28. ttyp* Slave pseudo ttys.

3.5	Changes	 in	 Configuration	 Files

This	 section	 describes	 the	 changes	 made	 to	 system	 configuration	 files	 since	 the	
Release 1.7. The descriptions are grouped by directory.

/ (the root directory)

.cshrc Aliases for multi and single have been removed, since there
are shell scripts to do these functions.

/etc

termcap The color used for the cursor and underlined text (for man)
has been changed from blue to green.

/usr/lib/uucp	 The	 files	 in	 this	 directory	 were	 shipped	 empty.	 Examples	 of	
the	 contents	 of	 these	 files	 are	 given	 here;	 change	 them	 to	
suit your system needs.

Release GL1-W2.1

 IRIS WORKSTATION 19 OVERVIEW

L-devices It now has an owner and group of uucpadm. In Release 1.7
it was owned by root.

 Example contents:
 DIR ttyd1 ttyd1 4800
 DIR ttyd2 ttyd2 4800
 DIR ttyd3 ttyd3 1200
 DIR ttyd3 ttyd3 300
 DIR xns xns xns

L-dialcodes It now has an owner and group of uucpadm. In Release 1.7
it was owned by root.

 Example contents:
 ba 415
 bost 617
 boston 617
 nv 212
 sf 415
 sj 408
 wash 202

L.cmds It now has an owner and group of uucpadm. In Release 1.7
it was owned by root.

 Example contents:
 rmail
 rnews
 date
	 finger	
 lpr
 ls
 ps
 who

L.sys It now has an owner and group of uucpadm. In Release 1.7
it was owned by root.

 Example contents:

	 #The	 following	 is	 1	 line	 in	 the	 file:
 gendir1 Any ttyd1 4800 ttyd1 “” \r\c ogin:--ogin:-EOT-ogin:

-BREAK3-ogin: uucpco assword: secret

	 #The	 following	 is	 1	 line	 in	 the	 file:
 genphone Any ttyd3 1200 ttyd3 “” \r\d\r\c S-q\r\d\r\c-S-q

\r\d\r\c-$-q\r\d\r\c-$ K\c DIAL: 5\d5\d5\d1\d2
\d1\d2\d\r\c ONLINE! \r\c ogin:-\r\c-ogin:

 -\r\c-ogin:--ogin:-EOT-ogin:-BREAK3-ogin: uucp assword: censored

20 IRIS WORKSTATION

Release GL1-W2.1

OVERVIEW

USERFILE It now has an owner and group of uucpadm. In Release 1.7
it was owned by root.

 Example contents:
 uucp, /usr/spool/uucp /usr/spool/uucppublic
 uucpco, /
 , /usr/spool/uucp /usr/spool/uucppublic

3.6 Major Changes to UNIX Software Since Release 1.7

3.6.1 Virtual Memory

Virtual memory has been implemented. Programs may be as large as 14Mb
(swap space permitting). The implementation is such that the sticky bit (see
chmod(2))	 is	 no	 longer	 significant;	 also	 the	 operating	 system	 turns	 it	 off	 in	 some	
circumstances.

3.6.2 New Object Format

The 2.1 release of the IRIS workstation introduces a new object format that is
similar to 4.2bsd systems. This new object format includes a new set of
language	 tools	 that	 run	 significantly	 faster	 than	 the	 equivalent	 tools	 for	 UNIX	
System III (which were used in previous IRIS workstation releases). Several
user-visible changes to the system occurred between Release 1.7 and Release
2.1 due to this change of object format:

1. Although non-graphics programs that executed under Release 1.7
will execute normally under Release 2.1, recompilation will result in
a slightly smaller and usually faster program due to the difference in
the way the stack is grown (stack probes are no longer necessary
due to virtual memory).

2.	 Object	 files	 (.o	 files)	 and	 archives	 (.a	 files)	 are	 not	 compatible	
between	 1.7	 and	 2.1.	 All	 object	 files	 must	 be	 recompiled.	 Object	
module archives must be recompiled and re-archived before they
will be usable in the 2.1 environment.

3. Certain switches to the loader have changed. If you run the loader,
ld(1), directly, consult the man page supplied in this release in
Appendix C and in the on-line manual.

3.6.3 DBX Symbolic Debugger

Release GL1-W2.1

 IRIS WORKSTATION 21 OVERVIEW

Release 2.1 contains an initial release of the symbolic debugger, dbx(1), for use
with C programs. To use this debugger, programs must be compiled and
loaded with debugging information (see cc(1)). Consult the dbx(1) man page in
Appendix C for more information.

3.6.4 FORTRAN Graphics Parameter Type Corrections

There are a number of inconsistencies between the documentation and code in
the FORTRAN version of the graphics library in Release 1.7. These
inconsistencies are divided into two classes.

The	 first	 class	 of	 inconsistencies	 is	 due	 to	 changes	 made	 to	 increase	 efficiency.	
These were in the routines clipli, clippn, screen, lampon, lampof, setbel, and
keyboa. These routines have now been made consistent between the
environments and are as documented in the IRIS User’s Guide.

The second class of inconsistencies is errors in the documentation. These
errors affect all FORTRAN graphics libraries — remote, native, terminal, and
workstation. These errors were in the parameter declarations for the routines
defras, deftex, and delete, and were corrected in the second edition of Pipeline.
They are reproduced below:

1. In the routine defras IRIS User’s Guide, (p 2-85, p 3-31), the
FORTRAN declaration of the chars and raster arrays should be:

character*8 chars(nc)
character*(*) raster

2. In the routine deftex IRIS User’s Guide, (p 2-80, p 3-32), the
FORTRAN declaration of the tex array should be changed to:

character*(*) tex

3. In the routine delete IRIS User’s Guide, (p 2-54, p 3-33), the
parameter count should be declared

 in C as:

long count;

 in FORTRAN as:

integer count

22 IRIS WORKSTATION

Release GL1-W2.1

OVERVIEW

 in Pascal as:

count:longint;

4. The subroutine declaration was omitted from the FORTRAN
declaration of the routine getdep IRIS User’s Guide, (p 2-114, p 3-
51).

3.6.5 The Remote Graphics Libraries

Workstation users can now run graphics on an IRIS terminal from their
workstations using the remote graphics library. The remote graphics libraries
for both C and FORTRAN are provided in this release. These environments
are easily loaded by simply using the -Zr switch with the f77(1) or cc(1)
command. Note that C programs must be both compiled and loaded using this
switch. FORTRAN binary (.j)	 files	 are	 usable	 in	 either	 environment.

3.6.6 Dealing with Systems that Do Not Boot

Many	 customers	 unintentionally	 make	 changes	 to	 UNIX	 configuration	 files	 or	
other	 files	 critical	 to	 UNIX	 operation,	 which	 prevent	 the	 UNIX	 Software	 from	
booting. Steps have been taken to remedy this problem.

First, the init program has been enhanced so that the UNIX Software will still
be	 able	 to	 boot	 if	 some	 of	 the	 entries	 in	 the	 critical	 files	 are	 wrong	 or	 the	 files	
are missing. This will yield a usable system that can be used to repair the
problem. This facility can be used by persons having some familiarity with
UNIX Software or under the direction of the SGI Hotline.

Second, some other techniques for recovery are documented. These are
discussed in detail in Section 4.7.

3.7 Bug Fixes and Enhancements Since Release 1.7

Release	 2.1	 provides	 the	 following	 bug	 fixes	 and	 enhancements.

3.7.1 UNIX Software

Release GL1-W2.1

 IRIS WORKSTATION 23 OVERVIEW

1. Running graphics from ttyd1 no longer locks up ttyd2.

2. Tar includes the following enhancements:

a. The -a	 flag	 has	 been	 added	 to	 prevent	 tar from altering
the	 access	 time	 of	 files	 read	 for	 backing	 up.

b. Some techniques have been documented for using tar
across the ethernet between systems. Some problems
with these techniques and how to deal with them have
also been documented.

3. Init now accepts the new run-state supplied in response to its
prompt when the single-user shell is exited or if the inittab	 file	 is	
missing. This run-state determines whether to enter multi-user or
single-user mode. Previously init would not accept whatever
answer was supplied under these circumstances, preventing UNIX
Software from functioning.

4. Programs no longer hang if they try to malloc() more memory than
the system physically has. Program size is limited to the smaller of
14Mb or the size of the swap area (typically less than 8Mb).

5. Xcp now chowns	 files	 so	 that	 they	 will	 be	 owned	 by	 the	 invoker	 of	
xcp.

6. The disk copy of the date is now updated when reboot is used to
reboot the system.

7.	 The	 C	 compiler	 now	 generates	 better	 bit-field	 code.

8. Xcp’s reliability has been improved.

9. Xcp now gives diagnostics on failure.

10. Malloc() has been replaced with a much faster version.

11. Cc -o foo foo.c now deletes foo.o.

12. Running xx without arguments no longer causes a core dump.

13. Cc no longer strips off the eighth bit on literal strings causing "\200"
to be treated as "\0".

14. The gtty() and stty() system calls, which were provided for UNIX
Version 7 compatibility, are no longer supported.

15. The cp	 program	 now	 closes	 files	 on	 error.

16. The cat program no longer prints two error messages on write
errors.

24 IRIS WORKSTATION

Release GL1-W2.1

OVERVIEW

17. The echo, head, ls, and tail programs now detect write errors.

18. Library now makes .j	 files,	 instead	 of	 .obj	 files.

19. Factor now completely factors all numbers.

20. A typographical error in the eqn(1) manual page has been corrected.

21. The uuto(1) manual page entry now reads User instead of Logname.

22. The adb program now allows access to variables with long names.

23. Cc now compiles usr.bin/acct/acctcom.c (the bug related to a class of
floating-point	 expressions).

24. The ls(1) manual page entry now documents -T.

25. The cu(1) manual page entry now documents how to send BREAKs
from cu.

26. The /etc/rc	 file	 has	 been	 corrected	 to	 use	 /bin/hostname instead of
/etc/hostname when invoking sgboot and sgbounce.

27. The calendar program now recognizes days of the week, a certain
date every month, and adjusts for holidays. See calendar(1).

28. The tset sequence used in .login	 in	 Release	 1.7	 conflicted	 with	
4.2bsd. It has been changed in Release 2.1.

29. There were both aliases and scripts for single and multi. The aliases
have been removed.

30. /usr/include/pwd.h now declares the functions, allowing compatibili-
ty with 4.2bsd.

31. The /usr/include/utmp.h	 file	 now	 declares	 the	 functions,	 allowing	
compatibility with 4.2bsd.

32. The dates in /usr/lib/acct/holidays, now also used by calendar, are
now based on January First being 001, as required.

33. The lpr program no longer fails if umask is 077.

34. The lp programs now work.

35. Invoking a graphics program on the console no longer hangs ttyd3.

36. Cc now knows how to compile .f	 files.

37. As per UNIX	 System	 V	 specifications,	 reading	 past	 EOF	 (through	
EOF)	 on	 a	 disk	 device	 now	 returns	 a	 count	 of	 zero	 (like	 a	 plain	 file),	
rather than returning an error, as happens in Version 7.

Release GL1-W2.1

 IRIS WORKSTATION 25 OVERVIEW

38. The cc manual pages are now on-line.

39.	 Flow	 control	 on	 the	 1400	 is	 fixed;	 previously	 IXOFF	 did	 not	 work.

40. Xlogin’s shell escape no longer disables interrupts. This means that
you can now interrupt subshells and the csh history works when
using xlogin ~! escape.

41. The -depth option for find is now documented. The UNIX System
V.2 find capabilities have been ported and documented.

42. The Mail program now properly parses headers for remote mail.
Also, you can now "save" a message to a shell command such as lpr
via:

s <message numbers> |<shell command>

43. The manual section getut(3c) is now correct in regard to the
declaration for pututline().

44. Stty no longer prints cread instead of -cread if cread is disabled.

45. The 4.2bsd /bin/test program has been ported. All the remaining
features of the System V Bourne shell’s builtin test have been
added.

46.	 The	 files	 L-devices, L-dialcodes, L.sys, L.cmds, and USERFILE, in
/usr/lib/uucp and /usr/spool/uucp/LOGFILE are now supplied and
correct (they were missing or in error in Release 1.7).

47. The sequence:

rcs -u foo

 no longer causes a core dump.

48. If sdiff is given an input line longer than 256 characters it will no
longer	 loop	 infinitely.

49. One serial port can now be enabled for modem (DTR) control.

50.	 The	 header	 file	 /usr/include/sgimath.h now correctly declares the
long	 float	 lceil().

51. Termcap now uses green instead of blue for the cursor and
underline sequence.

52. Smt works.

26 IRIS WORKSTATION

Release GL1-W2.1

OVERVIEW

53. Csh no longer causes a core dump when the following is entered:

% cd !#:h

54. The passwd program can now be used to change the password of
an account name longer than eight characters, without explicitly
specifying the account name. Release 2.1 also corrects a race
condition that in Release 1.7 occurred during simultaneous
invocation by different users and resulted in corruption of the
password	 file.

55. Rm	 now	 also	 accepts	 4.2bsd-style	 flags.	 Additionally,	 an	 argument	
consisting	 solely	 of	 a	 "–"	 will	 terminate	 flag	 processing	 to	 allow	
deletion	 of	 files	 whose	 first	 character	 is	 a	 dash.

56. The -b	 flag	 to	 grep and egrep now works.

57. The copyin and copyout routines now have a 4095 byte limit.

58. This release allows you to make multiple-tape backups using either
tar or cpio.

3.7.2 Graphics

1. Blink() is implemented.

2. It is unwise to run two graphics programs concurrently. In this
release, a second graphics program starting up will be killed by the
system.

3. A warning will be issued if RGB mode is attempted with less than
24 bitplanes.

4. You can use tpblank to prevent UNIX Software from changing the
color map or otherwise affecting the console IRIS screen when a
graphics program exits. UNIX Software never affects colormap
entries above seven. Tpon(1) may be used to allow UNIX Software
to subsequently affect the screen for non-graphics programs.

5. The program reshape(1) has been provided to shape the text port.

Release GL1-W2.1

 IRIS WORKSTATION 27 OVERVIEW

3.8 Known Problems

1. Terminals turned off or disconnected from enabled ports cause
spurious interrupts. This is a hardware problem that is being
addressed.

2. You cannot transform() more than 300 points with one command.

3. UNIX System V shared memory features are not implemented.

4.	 Some	 include	 files	 in	 /usr/include/sys are in violation of System V
specifications	 and	 may	 cause	 some	 application	 programs	 not	 to	
compile or run correctly.

5. The who -r command reports the incorrect run-level when the
system is in single-user mode.

6. Dbx has several bugs. See dbx(1) in Appendix C.

7. XON protocol printers may not work. This is being investigated.

8. The 3D portion of the Curve demo does not work.

9. smt fsf x, where x is a number, does not work. A workaround is to
type multiple “smt fsf” lines.

10. Because of a problem in this release, printer output is limited to 300
baud. See Section 4.5.2.

11. This release contains uucp	 administration	 files	 that	 are	 zero	 length.	
They	 need	 to	 be	 configured	 before	 uucp will work.

Other bugs in the system should be reported to the Geometry Hotline. In all
cases a bug report should include the smallest possible test case that exhibits
the bug, the corresponding source, and an exact sequence of events that cause
the failure. Where appropriate, a cartridge tape or a half-inch 1600 bpi tape
containing the source and data should be supplied.

3.9 Miscellaneous

3.9.1 Determining the Software Release Version Number

The	 version	 of	 the	 software	 release	 is	 recorded	 in	 the	 file	 /version.	 The	 file	
contains ascii text.

Release GL1-W2.1

Release GL1-W2.1

4. REFERENCE INFORMATION

This chapter contains updated general information about the use of the IRIS
workstation. This information will appear in a future revision of the IRIS
Workstation Guide.

4.1 Booting with new PROMs

The PROMs in an IRIS 1500 contain PROMs that are level 3 or higher. IRIS
1400s shipped after late January 1985 also have level 3 PROMs. These PROMS
differ from IRIS 1400 PROMs that are lower in number than level 3. The most
notable	 differences	 are	 how	 the	 IRIS	 is	 “booted”	 and	 configuration	 switch	
settings. These are described in Appendix A.

4.2 IRIS Workstation as Terminal Host

The IRIS workstation can be used as a “boot server” to service terminals or
workstations over the Ethernet. For instance, you can boot an IRIS terminal by
reading the iris program off the workstation. This is a use of the workstation
as a boot server. The boot server and the iris program are included as a
standard part of Release 2.1. The boot server consists of daemon programs
called /etc/sgboot and /etc/sgbounce. They can be started from /etc/rc when the
system enters multi-user mode during booting. The different versions of the
iris program (for different communications media and IRIS terminal type) are in
the /usr/local/boot directory.

Also, a remote version of the graphics library is supplied which enables a
program running on the workstation to display graphics on an IRIS terminal.

4.3 IRIS Terminal Programming Environment

The IRIS Terminal Programming Environment is software that allows you to
customize the terminal program that is downloaded to an IRIS terminal. It
includes	 the	 tools	 and	 source	 files	 necessary	 to	 create	 and	 modify	 the	 terminal	
program on an IRIS workstation. This terminal program can then be down-
loaded into the terminal using the workstation as a host. It may also be used
to	 create	 stand-alone	 programs	 that	 may	 be	 booted	 from	 the	 terminal’s	 floppy.	
This optional software package is documented in The IRIS Terminal Programming

30 IRIS WORKSTATION

Release GL1-W2.1

REFERENCE INFORMATION

Environment (document number 5001-021-001-0).

4.4 The IRIS Terminal Emulator

This is an optional software package that allows you to use an IRIS workstation
as an IRIS terminal. Its operation is described in wsiris(1) in Appendix C.

4.5 Serial Ports

This section describes how to use the workstation’s serial ports tor terminals,
printers, modems, etc.

4.5.1 Port 2 DTR

On some older IRIS 1400s, DTR (Data Transmit Ready) is not supplied on port
2 (ttyd1). An SGI Engineering Change Order resolves this. Customers requir-
ing this change should contact the SGI Geometry Hotline.

This problem can also be resolved by jumpering pin 6 to pin 20 on the cable
connecting the workstation to the serial device.

4.5.2 Connecting CRTs and Printers to the Workstation

There are three serial ports on the IRIS 1400 and 1500 workstations (in addition
to the console). They are designed to connect directly to DCE (Data Computer
Equipment) such as modems, via a straight cable. A straight cable has pin 1 of
the connector on one side connected to pin 1 of the other connector, pin 2 to
pin 2, etc:

Release GL1-W2.1

 IRIS WORKSTATION 31 REFERENCE INFORMATION

Straight cable
Workstation Modem Signals
1
2
3
4
5
8
6
22
20
7

1
2
3
4
5
8
6
22
20
7

Chassis ground
Transmit data
Receive data
Request to send
Clear to send
Carrier detect
Data set ready
Ring indicator
Data terminal ready
Signal ground

To connect the workstation to DTE (Data Terminal Equipment) such as CRTs
and printers, a different cable arrangement, known as a null modem, must be
used. The following table lists the cabling of a null modem. The pin numbers
separated by commas (,) should be connected together and also to the other
pin or pins listed in the same row:

Null Modem
Workstation Terminal Signals
1
2
3
4,5
8
6,22
20
7

1
3
2
8
4,5
20
6,22
7

Chassis ground
Transmit data
Receive data
Request to send, Clear to send
Carrier detect
Data set ready
Data terminal ready
Signal ground

For instance, pins 6 and 22 should be connected on the workstation, and their
wires should be connected to pin 20 on the connector for the terminal end of
the cable.

This will work with any serial device that complies with the IEEE RS232C
specification	 (except	 for	 the	 problem	 discussed	 in	 Section	 4.5.1).	 However,	
most printers will work with the following simpler cabling (which assumes that
modem control is not used):

32 IRIS WORKSTATION

Release GL1-W2.1

REFERENCE INFORMATION

Simplified	 Null	Modem
Workstation Terminal Signals
1
2
3

7

1
3
2
4,5
6,8,20
7

Chassis ground
Transmit data
Receive data
Request to send, Clear to send
Carrier detect, Data set ready
Signal ground

Most terminals do not require the various handshaking lines such as Clear to
send or Data set ready and so will work with the following three-wire null modem:

Three-wire Null Modem
Workstation Terminal Signals
2
3
7

3
2
7

Transmit data
Receive data
Signal ground

4.5.3 Hardware and Software Names for Serial Ports

UNIX Software refers to each serial (RS232) port by a name other than that
used by the hardware (back panel labeling). The following table documents
the correlation:

Names of Serial Ports
Hardware (back panel) Software (/dev & inittab)

Port 1
Port 2
Port 3
Port 4

console
ttyd1
ttyd2
ttyd3

The following table shows which type of Null Modem, if any, to use between
different types of equipment:

Release GL1-W2.1

 IRIS WORKSTATION 33 REFERENCE INFORMATION

Null Modem Usage
From To Cable

1400,1500,2400,2500
1400,1500,2400,2500
1400,1500,2400,2500
1400,1500,2400,2500
1000,1200,2000,2200

Modem
1000,1200,2000,2200
Printer
CRT
Host

Straight cable
Null modem
Simplified	 null	 modem
Three-wire null modem
Straight cable (usually)

4.5.4 Serial Ports for Non-login Use

When a port is used for logging in, the software changes the ownership and
permissions	 of	 the	 device	 file.	 The	 port	 cannot	 then	 be	 used	 for	 other	
purposes, such as for connecting a printer or for initiating a connection to
another computer with cu or uucp,	 without	 first	 changing	 these	 modes.

Before using a port for any non-login purpose, make these changes to its
modes (after turning off the getty, see Section 4.6):

1. Change the mode to 666.

2. Change the owner to root.

3. Change the group to sys.

For example, to connect a printer to port 4 (which the software refers to as
/dev/ttyd3), as root issue the following UNIX commands after any editing to
inittab and subsequent rebooting:

chmod 666 /dev/ttyd3
chown root /dev/ttyd3
chgrp sys /dev/ttyd3

4.5.5 Setting the Baud Rate for Printers

UNIX software will automatically set the baud rate and other terminal modes for
ports used for logging in and those used for calling out with cu and uucp. It
will not do so for ports that will be used for printers.

Since UNIX Software will automatically reset the baud rate and terminal modes
of	 any	 serial	 device	 after	 all	 programs	 that	 opened	 the	 device	 file	 have	 closed	 it	
(or	 exited),	 you	must	 first	 run	 a	 program	 that	 opens	 the	 device	 file	 and	 keeps	 it	
open. While any port can be used, the following example uses /dev/ttyd3:

sleep 10000000 < /dev/ttyd3&
sleep 3

34 IRIS WORKSTATION

Release GL1-W2.1

REFERENCE INFORMATION

The	 first	 sleep will run in background, keeping the port open for 4 months,
functionally forever. The second sleep	 will	 give	 the	 first	 one	 time	 to	 start	 up.	
Once the port is open, an stty command must be issued to specify:

1. The required baud rate.

2. Whether or not X-on/X-off protocol is desired.

3. Whether to precede each transmitted line-feed (newline) with a
carriage return.

4. Parity.

5. Etc.

A dash (–) in front of an option to stty	 means	 turn	 it	 off;	 otherwise	 it	 will	 be	
turned on. See stty(1) and termio(7). For example, to use a printer at 1200
baud with X-on/X-off protocol, without supplying a carriage return before each
line-feed, issue the command:

stty 1200 ixon -onlcr opost < /dev/ttyd3

The system will set some of these parameters by default. To determine the
defaults, issue the command:

stty -a < /dev/ttyd3

The	 –a	 flag	 causes	 stty to show the values of all parameters.

The necessary commands can be incorporated into the /etc/rc	 file	 after	 the	
Daemons section. After the existing line in /etc/rc that reads:

echo "."

you could add:

sleep 10000000 < /dev/ttyd3&
sleep 3
stty 1200 iron -onlcr < /dev/ttyd3

Then, whenever the system is rebooted and brought into multi-user mode, the
printer’s port will be set up automatically.

The lpr lineprinter spooler requires that the device to be used as the printer be
linked	 to	 the	 file	 /dev/lp. Thus, if the printer is connected to port 4 (/dev-
/ttyd3), issue the commands:

rm -f /dev/lp
ln /dev/ttyd3 /dev/lp

Release GL1-W2.1

 IRIS WORKSTATION 35 REFERENCE INFORMATION

This command need be issued only once (unless the printer is subsequently
moved to a different port). Once this is done, the command:

lpr foo

will	 print	 the	 file	 foo.

4.6 Modem Control

Normally the serial ports do not have modem control. That is, the device
connected to them (modem, terminal, printer, etc.) does not have to supply
Data Set Ready (DSR) or Data Terminal Ready (DTR) if the device is connected
through a “nullmodem”. Port 3, usually referred to by the software as ttyd2,
can	 be	 configured	 in	 software	 to	 be	 sensitive	 to	 DSR	 (or	 DTR).	 Modem	 control	
is useful if a modem will be connected to a port to allow dialing into the
system over the phone. It will allow the workstation to print the login prompt
after someone actually dials in.

To create the device, login as root and issue the commands:

mknod /dev/ttym2 c 3 130
chmod 666 /dev/ttym2

This only has to be done once. To enable logging in over that port, edit
/etc/inittab, changing all occurrences of ttyd2 to ttym2, and removing any x
that	 may	 appear	 between	 the	 first	 pair	 of	 colons	 (:),	 and	 then	 reboot	 the	
system with reboot.

If you do not wish to enable logging in on ttym2, you must disable ttyd2 by
editing /etc/inittab, putting an x	 between	 the	 first	 pair	 of	 colons	 (:),	 and	 then	
rebooting.

4.7 Recovering Systems that Do Not Boot

Unintentional	 changes	 to	 files	 critical	 to	 UNIX operation can prevent the UNIX
operating	 system	 from	 booting.	 These	 files	 are:

36 IRIS WORKSTATION

Release GL1-W2.1

REFERENCE INFORMATION

Critical Files
File Purpose
/
/vmunix
/vmunix1
/dev
/dev/console
/dev/syscon
/dev/systty
/dev/md0a
/dev/ip0a
/dev/rmd0a
/dev/rip0a
/dev/swap
/dev/drum
/etc
/etc/init
/etc/inittab
/bin
/bin/su
/bin/sh
/bin/csh

Root directory
Kernel
Kernel that boots disk1
Device directory
Console tty device
System console device
System tty device
Root	 file	 system	 device	 (1400	 only)
Root	 file	 system	 device	 (1500	 only)
Raw	 root	 file	 system	 device	 (1400	 only)
Raw	 root	 file	 system	 device	 (1500	 only)
Swap device
Paging device
Miscellaneous	 file	 directory
Program that starts other user processes
Table for init
Commands directory
Used to set environment before execing shell
Root shell
Root Shell

This chapter provides three methods of recovery.

First, UNIX software has been enhanced so that it can handle the most common
of these errors.

Second, a version of the UNIX kernel is supplied that will boot from the second
disk. This is useful to customers who have a second disk with a copy of the
files	 needed	 to	 boot	 UNIX software.

Third,	 a	 stand-alone	 program	 is	 supplied	 that	 will	 load	 a	 tape	 into	 the	 root	 file	
system on the disk even if the data on the disk has been lost. This destroys
any	 data	 that	 was	 on	 the	 root	 file	 system	 of	 the	 disk.

4.7.1 Recovery with INIT

In addition, a spare copy of tar has been installed in /etc. Init is able to recover
from most other errors that would prevent UNIX software from booting and
operating. Recovery from most of these errors is automatic in that the no
action is required of the operator to bring the UNIX software to single-user
mode (or multi-user if you elect to make your system secure, as discussed in
Section 4.8). Normally, Init does not repair the cause of the problem. Once
the system comes up, you should repair the system. This requires that one or

Release GL1-W2.1

 IRIS WORKSTATION 37 REFERENCE INFORMATION

more	 files	 be	 edited,	 or	 loaded	 from	 a	 backup	 tape.	 It	 can	 require	 that	 modes	
(permissions)	 of	 certain	 files,	 ownership,	 or	 group	 be	 changed.

NOTE

This recovery procedure uses tar	 to	 read	 files	 from	 a	 tape	 you	
supply that are missing from or damaged on the disk. You
should make this tape shortly after your system arrives and
again	 after	 you	 modify	 any	 configuration	 files	 or	 install	 new	
software. To make this tape, put a blank tape in the tape drive
and type the following:

tar - cv /vmunix /vmunix1 /bin /dev /etc

Another part of the recovery procedure (that uses /lastditch)
requires that you have a special-format tape with a “shell”
program on it (i.e., sh or csh). This is called the “last ditch”
tape. The shell must be copied onto a tape (either before
disaster strikes or on a different system) by issuing the
command:

dd bs=512 < /bin/csh > /dev/rmt1

When UNIX software is booted, it starts init and init starts a single-user shell.
It does this by invoking su -. This causes the su program to start up. Su
looks in /etc/passwd for an account called root and starts a shell (of the type
specified	 in	 the	 passwd	 entry;	 the	 default	 is	 /bin/sh).

The system will not boot correctly if any of the following conditions exists:

1. The /etc/passwd	 file	 is	 missing.

2. The entry for root is missing or in error in the /etc/passwd	 file.

3. Any of several critical programs is missing or corrupt.

The new init senses a problem when it is unable to execute su or when su
executes	 too	 quickly.	 “Quickly”	 is	 defined	 as	 less	 than	 15	 seconds	 the	 first	
time any error occurs and then as less than 30 seconds. If init cannot execute
su, init prints the error message:

execlp of /bin/su failed; errno = n

where n is an error number listed in the introduction to Section 2 in the UNIX
Programmer’s Manual. If su	 executed	 but	 finished	 too	 quickly,	 the	 following	
message is typed:

38 IRIS WORKSTATION

Release GL1-W2.1

REFERENCE INFORMATION

SINGLE USER MODE
SU is broken

This may be preceded by an error message supplied by su explaining why it
executed so quickly.

In either case, init tries to execute /bin/sh. If sh fails in either of the ways
discussed above, init prints either the error message:

execlp of /bin/sh failed; errno = n

or:

SINGLE USER MODE
/bin/sh is broken

In either case, init then tries to execute /bin/csh in a similar manner.

If this fails, init	 tries	 to	 read	 the	 missing	 files	 from	 the	 tape	 drive.	 This	
requires that you have a tape in the drive that contains a tar backup of the root
file	 system:

/bin/tar -xv /vmunix /vmunix1 /bin /dev /etc vmunix vmunix1 bin dev etc

Init	 attempts	 to	 read	 in	 the	 critical	 files	 that	 are	 needed	 for	 proper	 operation	 of	
UNIX	 software	 but	 are	 apparently	 missing	 or	 corrupted.	 Since	 the	 files	 (and	
directories) are listed both with and without a leading slash, they are read in
regardless of whether or not they were saved on tape with a leading slash.

If the correct tape is not in the tape drive, insert the correct tape and wait for
init to try tar again or reboot after inserting the tape. In this case, do not press
the reset button while either of the disk access lights (beside the tape drive) is lit.

If this fails (possible because there is not a tar tape in the tape drive), then init
will invoke the command:

/etc/tar -xvpU

This	 attempts	 to	 read	 all	 the	 files	 from	 the	 tape	 and	 will	 then	 change	 the	
permissions, ownership, and group of the copy on disk to be the same as the
version stored on tape, removing any existing copy on disk which may be the
wrong	 type	 of	 file.	 There	 is	 an	 extra	 copy	 of	 tar in /etc;	 you	 normally	 use	 the	
copy in /bin.	 This	 can	 be	 used	 to	 read	 in	 any	 files	 on	 the	 system	 that	 may	 be	
missing, even devices in /dev. If necessary, a custom tape can be produced
containing	 just	 the	 missing	 files	 so	 that	 you	 do	 not	 overwrite	 data	 such	 as	
programs with older versions from tape (which may be a backup tape if you
use tar for backup).

Release GL1-W2.1

 IRIS WORKSTATION 39 REFERENCE INFORMATION

This exhausts the init program’s automatic techniques for recovery. It defers to
the	 user	 to	 attempt	 to	 recover	 from	more	 difficult	 problems.	 This	 requires	 UNIX
expertise. Please contact the Geometry Hotline if you require assistance. Init
allows the you to recover by reading in and executing a program from a custom
tape (the “last ditch tape”) to try to solve the problem. It does this by
attempting to open /dev/rmt1, /dev/rqic, or /dev/mt1 until it has successfully
opened one of them. If it has failed to open any of the three, init will use the
mknod() system call to create the device /rmt1 as the tape drive (with major
and minor devices of 13/0) and open it. If any of these opens is successful,
then init	 will	 create	 the	 file	 /lastditch with mode 755 and will copy data from
the tape drive to /lastditch.	 It	 will	 then	 close	 these	 files.

Regardless of whether or not init is able to open the tape drive device and read
its data into /lastditch, it issues a sync() system call, wait a few seconds, and
execute /lastditch.

For example, if the /bin directory is unusable (perhaps because /bin was
changed	 to	 an	 ordinary	 file	 during	 a	 crash,	 or	 because	 of	 permissions	
problems), the shell can be read off the “last ditch” tape. To use this tape,
insert the tape into the tape drive and reboot the system by pressing the reset
button (when the disk access light is off). Init reads the shell off of the tape
and executes it. When the shell prompt appears, issue the commands:

/etc/unlink /bin
/etc/fsck

Then follow these steps:

1. Reboot the system (since the tape drive is unusable after loading csh
into /lastditch).

2. Insert a tar tape containing the programs in /bin and wait for init to
invoke tar.

Alternatively, you can remove the tape after the fsck, reboot the system and
wait until init executes /lastditch (remember that if the previous methods fail,
init will execute /lastditch	 even	 if	 it	 could	 not	 open	 the	 tape	 device	 file).	 You	
are now free to use tar and could issue the following command to restore bin:

/etc/tar -xv /bin

Note that the backup copy of tar in /etc	 was	 used.	 Significant	 system	
experience is needed to solve these types of problems.

Due	 to	 a	 firmware	 limitation,	 after	 reading	 a	 tape	 into	 /lastditch (if there was a
tape in the drive), the system will not be able to access the tape drive until
after a reboot. Thus, if after executing /lastditch, you want to read data from
a different tape, you must: 1) remove the tape that was read into /lastditch, 2)
reboot the system, 3) wait for /lastditch to execute (even though there was no

40 IRIS WORKSTATION

Release GL1-W2.1

REFERENCE INFORMATION

tape to read into it this time), and 4) insert the second tape that will be read
(probably by some other method such as tar, under user control).

If all these attempts fail, init creates and uses its own copy of the console
device	 in	 the	 file	 /console (as device 0/0) and tries the whole sequence again
(having assumed that it failed because /dev/console is missing or corrupt).

If all these attempts fail, init	 assumes	 the	 problem	 is	 a	 corrupted	 file	 system	 (as	
opposed	 to	 the	 permissions,	 ownership,	 or	 incorrect	 data	 in	 some	 files)	 and	
issues the following command:

/etc/fsck /dev/md0a /dev/md1a

Following the fsck, the entire sequence of su, /bin/sh, etc. is started again.

Init	 initially	 attempts	 to	 open	 the	 device	 file	 /dev/syscon and use it for terminal
I/O for the aforementioned boot sequence. Since /dev/syscon is just a link to
/dev/systty, if init can’t open /dev/syscon, then it will delete it and attempt to
re-link it to /dev/systty. If this fails, then init will attempt to link both
/dev/systty and /dev/syscon to /dev/console. If this fails, then it will attempt to
link both /dev/systty and /dev/syscon to /dev/ttyd1, which will be presumed to
be connected to an ordinary terminal running at 9600 baud. If this fails, then
init will create its own version of the console, as discussed previously. Init
will then try the entire sequence of su, /bin/sh, etc.

Release GL1-W2.1

 IRIS WORKSTATION 41 REFERENCE INFORMATION

4.7.2 Recovery by Booting from the Second Disk

When	 a	 system	 has	 two	 disks	 and	 copies	 of	 the	 critical	 system	 files	 are	 kept	 on	
the second disk, you can boot from the second disk if you cannot boot from
the	 first	 disk.	 To	 boot	 from	 the	 second	 disk,	 after	 pressing	 the	 reset	 button	
(presumably after shutting the system down normally or after a crash) respond
to the IRIS prompt:

iris>

by issuing the command:

d md(1,)vmunix1

or, for model 1500 users:

b ip1a:vmunix1

followed by a RETURN. After the system comes up with the superuser shell
prompt, run fsck	 immediately	 on	 all	 file	 systems.	 To	 do	 this,	 the	 file	 systems	
should be listed explicitly on the command line and the block device should be
specified	 in	 all	 “a”	 file	 systems,	 e.g.:

fsck /dev/md1a /dev/rmd1c /dev/md0a /dev/rmd0c

or, for model 1500 users:

fsck /dev/ip1a /dev/rip1c /dev/ip0a /dev/rip0c

At	 this	 point	 the	 previous	 root	 file	 system	 (/dev/md0a or /dev/ip0a) can be
mounted and the damage that prevents booting from it can be repaired.

When booting off the second disk, the second partition of this disk is used for
swap space instead of using /dev/swap. You may have used the second
partition of the second disk for temporary space (i.e., /tmp). This space will be
used for swap space when booting from this disk. If you do this, use mkfs to
recreate	 /tmp	 on	 this	 disk	 after	 you	 begin	 booting	 off	 the	 first	 disk	 again.

If you use your second disk for backup (via a dd	 of	 the	 first	 disk),	 all	 the	
critical	 files	 will	 already	 be	 on	 the	 second	 disk.	 If	 the	 second	 disk	 is	 not	 used	
for	 backup,	 a	 subset	 of	 the	 files	 on	 the	 root	 file	 system	 can	 be	 copied	 to	 the	
second	 disk.	 The	 files	 that	 should	 be	 copied	 to	 the	 second	 disk	 are:

42 IRIS WORKSTATION

Release GL1-W2.1

REFERENCE INFORMATION

/.cshrc	 /.login	 /.logout	 /.profile	 /vmunix	
/vmunix1

/bin/cat /bin/chgrp /bin/chmod /bin/chown /bin/cp
/bin/cpio /bin/csh /bin/dd /bin/echo /bin/ln
/bin/ls /bin/mkdir /bin/more /bin/mv /bin/ps
/bin/pwd /bin/rm /bin/rmdir /bin/sh /bin/sleep
/bin/sttv /bin/su /bin/sync /bin/tar /bin/tset
/bin/vi

/dev/console	 /dev/drum	 /dev/floppy	 /dev/ip0a	 /dev/ip0b
/dev/ip0c /dev/ip0d /dev/ip0e /dev/ip0f /dev/ip0g
/dev/ip0b /dev/ip1a /dev/ip1b /dev/ip1c /dev/ip1d
/dev/ip1e /dev/ip1f /dev/ip1g /dev/ip1h /dev/kmem
/dev/md0a /dev/md0b /dev/md0d /dev/md0e /dev/md0f
/dev/md0g /dev/md0h /dev/md1a /dev/md1b /dev/md1c
/dev/md1d /dev/md1e /dev/md1f /dev/md1g /dev/md1h
/dev/mem /dev/mt1 /dev/nrmt1 /dev/nrtape /dev/null
/dev/rip0a /dev/rip0b /dev/rip0c /dev/rip0d /dev/rip0e
/dev/rip0f /dev/rip0g /dev/rip0h /dev/rip1a /dev/rip1b
/dev/rip1c /dev/rip1d /dev/rip1e /dev/rip1f /dev/rip1g
/dev/rip1h /dev/rmd0a /dev/rmd0b /dev/rmd0d /dev/rmd0e
/dev/rmd0f /dev/rmd0g /dev/rmd0h /dev/rmd1a /dev/rmd1b
/dev/rmd1c /dev/rmd1d /dev/rmd1e /dev/rmd1f /dev/rmd1g
/dev/rmd1h /dev/rmt1 /dev/rqic /dev/swap /dev/syscon
/dev/systty /dev/tty /dev/ttyd1 /dev/ttyd2 /dev/ttyd3
/dev/ttyn0 /dev/ttyn1 /dev/ttyn10 /dev/ttyn11 /dev/ttyn12
/dev/ttyn13 /dev/ttyn14 /dev/ttyn15 /dev/ttyn16 /dev/ttyn17
/dev/ttyn18 /dev/ttyn19 /dev/ttyn2 /dev/ttyn20 /dev/ttyn21
/dev/ttyn22 /dev/ttyn23 /dev/ttyn24 /dev/ttyn25 /dev/ttyn26
/dev/ttyn27 /dev/ttyn28 /dev/ttyn29 /dev/ttyn3 /dev/ttyn30
/dev/ttyn31

/etc/checklist /etc/clri /etc/cshrc /etc/fsck /etc/fsdb
/etc/group /etc/init /etc/inittab /etc/link /etc/mkfs
/etc/mknod	 /etc/mnttab	 /etc/mount	 /etc/passwd	 /etc/profile
/etc/reboot /etc/sys_id /etc/tar /etc/telinit /etc/termcap
/etc/ttytype /etc/umount /etc/unlink

Use tar	 to	 copy	 these	 files.	 It	 preserves	 the	 modes	 and	 ownership	 of	 the	 files.	
The	 files	 in	 /dev should only be “copied” with tar, cpio, or mknod all of which
issue a mknod()	 system	 call	 rather	 than	 actually	 copy	 the	 data.	 If	 the	 first	 file	
system on the second disk is mounted on /mnt using the command:

/etc/mount /dev/md1a /mnt

the	 following	 commands	may	 be	 issued	 to	 copy	 these	 files:

Release GL1-W2.1

 IRIS WORKSTATION 43 REFERENCE INFORMATION

cd /

tar -cBf - .cshrc .login .logout .profile vmunix vmunix1 dev | \
(cd /mnt;tar -xBvf -)

cd /bin

tar -cBf - \
cat cbgrp chmod chown cp cpio csh dd echo ln ls \
mkdir more mv ps pwd rm rmdir sh sleep stty su sync tar tset vi \
| (cd /mnt/bin;tar -xBvf -)

cd /etc

tar -cBf - \
checklist clri cshrc fsck fsdb group init inittab link \
mkfs mknod mnttab mount passwd profile reboot sys_id \
tar telinit termcap ttytype umount unlink \
| (cd /mnt/etc;tar -xBvf -)

cd /

4.7.3 Creating a Bootable and Using It for Recovery

This method of booting your system should be used only if you cannot boot
your system using the above procedures. It loads software from a tape onto
the disk, writing over any data that was there before the load. This method is
available to systems with release 2.1 or higher. To use this method, you must
make a bootable tape to use when your system will not boot.

You can make a bootable tape any time your system is running UNIX. To make
a bootable tape, follow these steps:

1.	 Change	 to	 the	 root	 of	 the	 file	 system:

cd /

2. Use su to become superuser.

3. Put a tape in the tape drive.

4. Run the mkboot program:

/etc/mkboot

44 IRIS WORKSTATION

Release GL1-W2.1

REFERENCE INFORMATION

You	 should	 back	 up	 other	 file	 systems,	 such	 as	usr on a separate tape using tar
or cpio. Mkboot always copies the root. The bootable tape has the following
structure:

 stand-alone code
root	 file	 system

You can use this tape to boot your system and load software onto the disk.
Use Fex or Ipfex to read the tape. Fex is used for non-smd type drives and
Ipfex is used for smd-type drives (such as the Fujitsu Eagle).

The following procedure assumes you cannot boot the machine from the disk
and	 you	 are	 willing	 to	 write	 over	 the	 disk,	 destroying	 the	 root	 file	 system.	 To	
read in the tape, follow these steps:

1. Reset the machine by pressing the “reset” button on the monitor.
You can also reset by pushing the boot button on the chassis. Some
IRIS workstations have a separate box for the mouse
communications;	 it	 contains	 a	 system	 reset	 button	 as	 well.

2. Put the bootable backup tape in the tape drive.

3. Read the Fex program off the tape:

tb fex (or ipfex)

 or, for users with level 3 or higher PROMS:

b mt:fex (or ipfex)

4. Tell Fex	 to	 create	 the	 root	 file	 system:

t

5. Specify the defaults that Fex offers by typing a carriage-return to
each of the following prompts:

Tape file (2)?
Unit (0)?
File System (a)?
[Fex types message about block sizes
it will use for the copy.]
Type ‘go<return> to begin...
 type “’go” and a carriage-return here

 The following prompts will appear on the display:

Copy started...

Release GL1-W2.1

 IRIS WORKSTATION 45 REFERENCE INFORMATION

10 20 30
Tape to Disk Copy complete
Fex 4.4>

6. Type the following to re-enter the PROM monitor:

q (to quit)

 Boot the disk in the normal manner.

The	 /usr	 file	 system	 can	 be	 restored	 while	 the	 system	 is	 running.	 To	 restore	
the	 user	 file	 system,	mount	 /usr, then read in the /usr	 file	 system	 by	 using	 cpio	
or tar to read in a tape that contains the /usr	 file	 system.

4.8 Security

As	 configured	 by	 SGI,	 the	 IRIS	 workstation	 is,	 in	 general,	 very	 secure.	 It	 is	
difficult	 for	 an	 unauthorized	 person	 to	 access	 or	 change	 data.	 One	 gap	 in	
security is that anyone can press the reset button to reboot the system. When
the system comes up in single-user mode the “root” shell allows the user to
access or change any data on the system. (Of course pressing the reset button
while UNIX	 is	 running	 can	 corrupt	 the	 file	 system.)

Two	 changes	 in	 the	 configuration	 files	 eliminate	 this	 security	 gap.	 Note	 that	
this change reduces the effectiveness of the system’s ability to recover from
errors	 in	 the	 configuration	 files,	 as	 discussed	 in	 Section	 4.7.1.	 First,	 edit	 the	
first	 line	 of	 /etc/inittab which, as shipped, reads:

is:s:initdefault:

to read:

is:2:initdefault:

Second, edit /etc/rc and after the lines:

if [$7 = 2]
then

add:

echo "Checking the File Systems For Consistency"
fsck -q < /dev/console 2>&1 > /dev/console

Make	 both	 these	 changes	 together.	 They	 change	 the	 configuration	 of	 the	

46 IRIS WORKSTATION

Release GL1-W2.1

REFERENCE INFORMATION

system so that when the system is rebooted, instead of going into single-user
mode with a root shell (state s),	 it	 will	 check	 the	 file	 systems	 and	 go	 directly	
into multi-user mode (state 2).

After	 these	 changes,	 no	 one	 can	 use	 the	 system	 without	 first	 entering	 a	 valid	
account name and password. If one types Control-C during the fsck it will be
terminated and the system will enter multi-user mode. This will not corrupt the
file	 systems;	 however,	 they	 will	 remain	 unchecked.

Release GL1-W2.1

Appendix A

System Administration

Release GL1-W2.1

Release GL1-W2.1

A. System Administration

The information in this appendix applies to IRIS
workstations with PROMs of level 3 or higher; if you have
level 3 or higher level PROMs, it supersedes information in
Section 6.1 of the IRIS Workstation Guide, version 1.0.
All IRIS 1500 and some 1400 workstations have level 3 or
higher PROMs. You can find out the level of your boot
PROMs by reading the information typed on the console
after you push the reset button.

You	 are	 responsible	 for	 configuring	 the	 IRIS	 workstation	 to	 meet	 local	
requirements. The sections that follow explain how to boot the IRIS
workstation,	 check	 the	 file	 system,	 configure	 UNIX,	 add	 new	 accounts,	 add	
ASCII terminals and modems, make backups, shutdown the IRIS workstation
and recover from a crash.

This document uses the standard UNIX convention for referring to entries in
the UNIX reference manual. The entry name is followed with a section number
in parentheses. For example, cc(1) refers to the cc manual entry in Section 1 in
the UNIX Programmer’s Manual.

A.1 Startup

A.1.1 Booting the IRIS Workstation

There are two ways to boot an IRIS workstation:

1. Autoboot

2. Manual boot (using the PROM monitor).

When you autoboot, the IRIS sets the hardware to use the primary display.
Manual booting allows you to select either type of display monitor (see below).

At power-up, the IRIS workstation is set to enter the IRIS PROM monitor,
displaying the prompt:

iris>

or to automatically boot. The PROM monitor is entered if the Boot Environment
configuration	 switches	 (switches	 5-8)	 on	 the	 back	 panel	 of	 the	 IRIS	 are	 set	 to	
0111 where “1” means Closed and “0” means Open .

2 IRIS WORKSTATION

Release GL1-W2.1

System Administration

If the autoboot switch (switch 4) is Open and the boot environment switches
are set to select a bootable device (see Table A-1), the IRIS will attempt to boot
itself	 from	 the	 file	 defaultboot	 on	 the	 device	 specified.	 If	 the	 verbose
configuration	 switch	 is	 Open 	 the	 name	 of	 the	 file	 the	 IRIS	 is	 attempting	 to	 boot	
will be displayed.

NOTE: If the IRIS workstation is set to boot from a non-existent device, either
with the autoboot feature or manually, the system may need to be reset to
recover.

Configuration	 Switches
Switch Name Position Meaning
1 - 2 Serial line 111

10
01
00

300 baud
19,200 baud
1200 baud
9600 baud

3 Verbose 1
0

No status reports during power-up testing
Status reports during power-up testing

4 Suppress autoboot 1
0

Autoboot using the default boot environ-
ment	 (defined	 below)
Manual Boot

5 - 8 Boot environment 1111
1110
1011
0111
0101
1001
0110

all others

Floppy disk boot
Disk boot (IRIS 1400)
Network boot
PROM Monitor
Tape boot
IEEE488 boot
Eagle Disk boot (IRIS 1500)
Undefined

Table	A-1:	 IRIS	Workstation	 Configuration	 Switches

The system can be booted from the PROM monitor by typing b (boot),
followed	 by	 an	 optional	 device	 specifier	 and	 an	 optional	 file	 name.	 If	 no	
device	 specifier	 is	 given,	 the	 boot	 environment	 switches	 on	 the	 back	 panel	 are	
examined. If the switches specify a bootable device, this device becomes the
boot device. Otherwise, the boot device defaults to rmd0N: (see below), where
N	 is	 the	 file	 system	 specified	 in	 the	 disk	 label	 on	md0.	 If	 no	 filename	 is	 given,	
the	 file	 defaultboot is assumed. A colon (:) is always the last character in a

1. 1 means Closed and 0 means Open .

Release GL1-W2.1

 IRIS WORKSTATION 3 System Administration

device	 specifier.

The bootable devices are listed below. The XY portion of the device refers to a
device	 number	 (X=0,1,2...)	 and	 a	 file	 system	 letter	 (Y=a,b,c...).	 If	 the	 device	
number	 is	 missing	 and	 needed,	 the	 default	 is	 zero.	 If	 the	 file	 system	 letter	 is	
missing	 and	 needed,	 the	 label	 on	 the	 specified	 device	 is	 read	 and	 the	 root	 file	
system used.

Device Table
Name Device

mdXY:
rmt:
mfXY:
ipXY:
g

Vertex 72 MB disk (1400 only)
Streaming tape
Floppy disk
Eagle 440 MB disk (1500 only)
IEEE488 (General Purpose Interface Bus)

The syntax for booting from the IEEE488 device is:

iris> b g[.x]:[file]

where:
 i is a IEEE488 address (defaults to seven (7) if not present)
 file	 is	 the	 name	 of	 the	 file	 to	 boot

In the simplest case, the command:

iris> b

would	 boot	 the	 file	 defaultboot	 from	 the	 default	 device	 (set	 in	 the	 configuration	
switches or md0, if none). The command:

iris> b mf0a:/stand/picture

would	 look	 for	 the	 file	 /stand/picture	 on	 file	 system	 a	 (usually	 the	 root	 file	
system is a)	 of	 floppy	 drive	 zero.	 The	 command:

iris> b md1:vmunix

would	 look	 for	 the	 file	 vmunix	 on	 the	 root	 file	 system	 of	 Vertex-type	 drive	 one.

The IRIS workstation can also be booted over the Ethernet using the SGI XNS
protocol. The boot command here is n	 (netboot),	 followed	 by	 a	 file	 specifier	
which consists of hostname:filename. The hostname is optional. If it is omitted,
the	 first	 host	 to	 recognize	 filename will respond. For example:

iris> n cruncher:/usr/local/boot/goboot

4 IRIS WORKSTATION

Release GL1-W2.1

System Administration

will ask the host cruncher	 to	send	 the	file	 /usr/local/boot/goboot to be booted by the
IRIS.

NOTE: If the IRIS workstation is to be booted from a tape drive,
the tape must be in cpio(1) format.

A.1.2 Listing the Files on a Device

Since the IRIS workstation can be booted from different environments (hard
disks,	 tape	 drives,	 etc.)	 it	 can	 be	 useful	 to	 find	 the	 names	 of	 the	 files	 on	 a	 tape	
or disk before booting. This information can be found with the PROM
Monitor. For example:

iris> ls /
bin etc stand unix1
defaultboot lib tmp usr
dev lost+found unix version
iris>

searches	 the	 root	 file	 system	 on	 the	 default	 device	 and	 lists	 its	 contents.	 After	
locating	 a	 file,	 it	 can	 be	 booted	 explicitly	 with	 the	 b	 command.	 For	 example:

iris> b unix
...

See Table A-2 for a list of the commands available through the PROM Monitor.

A.2 Boot Verbose Information

If the Verbose 	 configuration	 switch	 (switch	 3)	 is	 set	 to	 the	 Open position, the
IRIS workstation will display the following additional information during
system startup:

1. Announce that it is scanning processor memory and display an “X”
for each half megabyte of memory and a "." for each non-existent
half megabyte of memory

2. Announce that it is clearing processor memory

3. Map processor memory

4.	 the	 configuration	 switch	 values

This information is intended for diagnostic purposes only. Normally the Verbose
configuration	 switch	 should	 be	 set	 to	 the	 Closed position.

Release GL1-W2.1

 IRIS WORKSTATION 5 System Administration

Command Description
h

t

n [file]

b

b [file]

b [dev]:[file]
ls [dev]:[pathname]/*

b [dev]:
r

Display a list of PROM monitor commands.
Enter serial interface to host.
Boot file over a network. File may be in the form of
hostname:filename.
Boot defaultboot from the default boot device. If the device
is	 the	 tape	 drive,	 the	 file	 must	 be	 in	 cpio format.
Boot file on the default boot device. The default boot
device	is	determined	from	the	configuration	switches	(see	
Table A-1).
Boot file on device dev.
List the contents of directory pathname on device dev.
If ls is used with no arguments, the monitor provides a
list of the available devices.
Boot	 file	 defaultboot	 from	 specified	 device.
Restart the PROM monitor.

Table A-2: PROM Monitor Commands

Release GL1-W2.1

Release GL1-W2.1

Appendix B

Stand-alone Disk Formatting

Release GL1-W2.1

Fex

Disk Formatter And Exerciser

V4.4

Introduction

Fex is a Formatter and EXerciser (thus its name) for winchester disk
drives on the IRIS 1400. It will handle one or two drives, and supports any
combination of VERTEX V170 and ATASI 3046 drives. Fex also manages disk
labels, which are software labels describing the type of drive, how the drive is
partitioned logically, and bad track information. Fex will also copy all or por-
tions of disks from one drive to another and it will copy tapes to disk. Fex
can	 also	 be	 used	 to	 format	 and	 exercise	 floppies	 (see	 setunit below). On a
GL2 machine only:

Fex and ipfex do not work yet on GL2 machines. Set up a dumb terminal as
the console (refer to Chapter 6 of the IRIS Workstation Guide for a discussion
of	 proper	 configuration	 switches.)

Theory of operation

Most input to fex is performed by single characters, with NO <return>s,
except for numbers and strings which must end with a <return>. When
single characters are expected, fex will complete the command or request
immediately, usually asking for further input. Strings and numbers may be
edited using <BACK-SPACE> to delete the previous character, and
<CTRL-U> to delete all characters back to the last prompt. Use a
at any time to return to the Fex 4.4> top level command prompt. When fex
starts up its herald will look like:

SGI Formatter/Exerciser 4.4 September 24, 1984
Initialize drive 0
 Name: <drive name>, Serial: <drive serial #>
Fex 4.4 >

If the drive has no label, (i.e., hasn’t been run through fex or the manufactur-
ing disk exerciser), the start up will be:

No label--Type of drive (vertex)?

If you answer “?<return>” you will be given a list of the known drives (ver-
tex or atasi for now). Enter a “<return>” to accept the default (vertex), or

- 2 -

enter “atasi<return>” if Drive 0 is an Atasi. You will then get:
 Using default label
Fex 4.4 >

Which reminds the user that the drive name (e.g., Beta Release 1.7, etc.),
serial number, and bad block information needs to be entered.

At the Fex 4.4> prompt, use “h” to obtain a help message, which will
look like:

Fex 4.4 > Help--Commands are:
 badblock - enter bad block edit mode
 copy - copy data
 exercise - run drive read/write/seek tests
 format - format the selected drive
 help - print this message
 initialize - initialize drive & read label
 mapbad - map out a bad track
 quit - quit; return to IRIS monitor
 set - set miscellaneous variables
 tape - tape copy to disk utility

To	 select	 a	 command,	 enter	 the	 first	 character	 of	 the	 command.	 The	 next	 sec-
tion describes each command in detail.

Fex	 will	 be	 used	 in	 the	 field	 for	 several	 purposes.	 The	 customer	 will	 use	
fex to restore a disk from tape and map out bad tracks which develop over
time under normal operating conditions. The command mapbad is provided
for this purpose, and should be needed very rarely. Another use of fex will
be to reformat a disk if its formatting information is lost. This can happen if a
power supply should fail while the disk is running, or a power failure should
occur during a disk write operation.

When a disk is formatted, all data on the disk is destroyed, so this should
only be done with a new disk, or with a complete disk backup, either from tape
or from another disk.

To operate on Drive #1 rather than Drive #0 (the default), use the
setunit command (see below).

Commands/Tests

badblock
This command will prompt:

Bad Block edit, type h for help
 bb>

and “h” will produce the message:

- 3 -

bb > Help—choose one of
 add bad blocks
 clear bad block list
 edit list
 print list
 quit
 setup alternates
 zap alternate assignments

Use add to enter new bad blocks to the bad block list tor the currently
selected drive (see set below). The entry format is cylinder/head,
where the cylinder and head are read directly from the track list pro-
vided by the drive manufacturer. A session might look like:

bb> Add new entries. Mode cyl/hd(/sec), end with a blank line:
bb add: 45/5
bb add: 103/0
bb add: 200/0
bb add: 450/3
bb add:
bb>

End the bad block list with a blank line (i.e., simply press
“<return>”). If the “/head” is left off, the previous bad block’s head
will be used, and printed out as if you had typed it. For ease of entry,
a “.” may be used in place of the “/” between the cylinder and the
head, facilitating the use of the numeric key pad at the right of the
keyboard. The <ENTER> key on the number pad is the same as
<return>.
Use clear to delete the current list. This is useful if you’ve entered the
wrong list, or the list is wrong because it was copied from another
drive.
Use edit to repair any typographical errors. A session (using the above
entered bad blocks) would look something like:

 bb> Edit bad blocks:
For each bad block, press ‘space’ to keep, ‘d’ to delete, ‘q’ to
quit...
 bb edit 45/5? Kept
 bb edit 103/0? Deleted
 bb edit 200/0? Kept
 bb edit 450/3? Kept
 bb>

In this example, the second bad block (103/0) was deleted (“d” typed)
from the bad block list, and the rest were kept (“<SPACE>” typed).
Use print to print the current list of bad blocks. This should be done
prior to formatting to verify that the list is correct. This command is
the same as setbadblocks The list shows only the bad tracks unless the
verbose	 flag	 is	 set	 (see	 set below), in which case the assigned alternate

- 4 -

tracks are also listed.
Use quit to return to the Fex 4.4> prompt and leave bad block mode.
Use setup to assign alternate tracks to newly entered bad tracks. This
is done automatically when the drive is formatted, but can be done by
hand to see the assigned alternates.
Use zap to clear the assigned alternate associations. This should be
done if a bad block was added to an existing bad block list and the
drive is going to be reformatted. Normally, associations between bad
tracks and alternates are preserved to retain data integrity, but if the
drive is going to be reformatted, the alternate association should be
redone	 for	 layout	 efficiency.

copy
This command copies data between drives. It can be used to copy data
from a good system disk to a newly formatted drive. Be careful not to
write to your good system disk! A copy session will look something
like:

Fex 4.4 > Copy Data From:
Disk Unit (0)=
Disk address (cyl/hd(/sec))(0/0/0)?
To:
Disk Unit (1)=
Initialize drive 1
 Name <some name>, Serial: <serial>
Disk address (cyl/hd(/sec))(0/0/0)?
 # of sectors per transfer (chunk)(119)?
 # of chunks to transfer (970)?
Verify? Yes
..
.....................
Copy complete!
Label on drive 1 needs updating... do it? Yes
Fex 4.4 >

The numbers in parentheses are the defaults which will be used if a
<return> is typed. The From and To units may be the same, and
specify which drive to read and write respectively. (If either of the
drives has not been initialized, it will be initialized when the unit is
specified,	 thus	 the	 “Initialize	 drive	 1”	 message	 in	 the	 above	 example.)	
The From and To disk addresses are the starting point for the transfer.
The # of sectors per transfer will default to one cylinder, and the # of
chunks to transfer will default to the whole disk. If you answer “y” to
Verify,	 each	 chunk	 written	 will	 be	 read	 and	 verified	 against	 the	 original	
data. Each “.” represents 10 chunks, and thus there are 97 of them in
this example. When the copy completes, the target drive label will
need to be updated if it was over-written by the copy (which it was in

- 5 -

this	 case);	 answer	 “y”.

exercise
This command enters the disk exerciser portion of Fex 4.4>. Its
prompt and help message are:

Fex 4.4 > Exercise
 Drive: vertex Unit=0, (970+17/7/17(512)) ILV=1
***Warning: set write lock off to scribble on the disk
Which exercise? Help--Choose from:
 complete write/read multi pass/multi pattern
 error display/reset
 quit
 random reads
Which exercise?

You will get the warning about the writelock only if the software write
lock is on. Use setwritelock to turn it off if you really want to scribble
on a disk.
Most of these exercises are used for diagnostic purposes to qualify and
time a new disk drive. Only the complete and error display com-
mands	 should	 be	 used	 in	 the	 field.	 The	 complete test will prompt:

Which exercise? Complete Exercise -- track writes and reads
Repeat how many times? Forever
Alternate units? No
Unit 0: Pattern 0xB1B6DB6D
 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320
330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480
490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640
650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800
810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960
970 980
Pass 1 Unit 0 bad 0 retries 0 total bad 0
Unit 0: Pattern 0xB1F6DB6D

To the “Repeat” question, press “<return>” to select “Forever”, oth-
erwise enter the number of loops desired and press “<return>”. To
the “Alternate units” question, if you answer “n”, only the currently
selected drive will be exercised, otherwise, both drives will be exer-
cised.	 Various	 data	 patterns	 will	 be	 written,	 read	 and	 verified	 sequen-
tially to the whole disk (or disks). If any errors are encountered, mes-
sages will be printed, and a summary of good and bad passes will be
output at the end of each pass of the test.
After exercising a disk, use errordisplay/reset to print out the cumula-
tive error information from the exercise. If bad spots are reported
which are not in the bad block lists for each drive, add them to the bad
block lists, and reformat each drive as necessary. Before retesting the

- 6 -

drive using the complete test remember to reset the error information
for a correct reading of the disk errors.

format
This command will format the currently selected disk drive. When
selected, it will prompt:

Fex 4.4> Format disk.
***WARNING -- ALL DATA ON UNIT 0 WILL BE LOST!!!
 Drive: vertex Unit=0 (970+17/7/17(512)) ILV=1
***WARNING -- No bad blocks!!!
Type ‘go<return>’ to start...

The Unit will be the currently selected unit (see set below). The drive
information should correspond properly to the type of drive in the sys-
tem (otherwise, the label was set up improperly, and should be
changed using set label). The “No bad blocks” warning will only be
printed if no bad blocks have been entered for the drive (see badblock
above). When you type “go<return>”, the output will be

Starting format...
 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320
330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480
490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640
650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800
810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960
970 980
Formatting bad tracks...
Writing label...
Formatting complete.

Formatting will rarely produce any errors, so it is wise to run “exercise
complete” after every format.

help
This command produces the help message displayed above.

initialize
This command reads the label from the currently selected drive,
overwriting the in-core copy. It will prompt:

Fex 4.4> Initialize drive 0
***Warning: in-core label newer than disk copy.
***Clobber in-core label? y
 Name: drive name, Serial: #####

If	 you	 have	modified	 the	 in-core	 label,	 either	 by	 set	 label	 or	 changing	 the	
bad block list, you will receive the warning shown above. Answer “y<
return	 >”	 if	 you	want	 to	 undo	 your	 label	modifications	 and	 return	 to	 the	
label on the disk. If you answer anything but “y”, the in-core label will
be preserved, and the initialize aborted. If the drive has no label at all,
you will get:

- 7 -

Fex 4.4> Initialize drive 0
 No label--Type of drive (vertex)?
 Using default label

At the type of drive prompt, type a “?” to obtain a list of the known
drive types, or a <return > to use the default type (as shown in the
parentheses). If the label on the drive is unreadable (i.e., it has not
even been formatted), you may get a disk error message printed before
the “No label” line. This is normal, and indicates that the drive needs
to be formatted,

mapbad
This command will add a bad track to an active disk. That is, if a bad
spot develops on the disk while it is in use, this command will substi-
tute a good track for the bad one, and copy data from the bad track to
the new alternate. It will prompt:

Fex 4.4> Map a bad track
 Name: drive name. Serial: ###
 Bad track: Cylinder: 123 Head: 5
 Reading old data into memory...
 Re-formatting bad track and its alternate...
 Re-writing data to new track...
 Re-writing label
 Track remap complete.

Warning: Insure that the drive label has all of the known bad blocks
(from	 the	 list	 on	 the	 drive)	 recorded.	 If	 NOT	 -	 set	 the	 blocks	 first	 and	
then issue the mapbad command.
If	 there	 is	 a	 problem	 reading	 a	 sector	 of	 the	 specified	 bad	 track,	 you	
will get error messages after the “Reading old data” line. If after 10
failures at reading a sector, you will be prompted with:

Old data read error: Retry/Skip/Quit/Verbose?
Answer “r”, “s”, “q”, or “v” as appropriate. You may want to retry a
few times, then skip the bad sector. If you skip a sector, remember
that its data will be lost, which may be the only way to solve the prob-
lem.
Once the old track has been read, the old and new tracks are reformat-
ted, and the saved data is written to the new track. If the data rewrite
produces errors, it means that there are problems with the newly
assigned alternate track. This probably indicates a more severe drive
problem, and the whole drive should be re-formatted and exercised,
and perhaps exchanged. NOTE: re-formatting will erase all data, so
perform	 a	 full	 backup	 first.

- 8 -

quit
This command exits from fex. It prompts

Fex 4.4> Quit Label on drive 0 needs updating... do it? y
--confirm	 quit	 with	 “y”:	 y

If one or both of the drives need their labels updated, you will be
asked	 if	 they	 should	 be	 re-written;	 answer	 yes.	 Finally,	 confirm	 the	
quit with “y<return>” and you will be returned to the IRIS> prom
monitor prompt.

set
This	 command	 is	 a	 general	 purpose	 variable	 and	 parameter	 modifier.	 Its	
prompt and help message are:

Fex 4.4 > Set ? Set commands are:

badblocks - display current drive bad block list
defaults - display settings
label - set up the label
unit - select unit for testing (0/1/f)
verbose - verbose (on/off)
writelock - write lock switch (on/off)

Set badblocks displays the list of bad blocks for the currently selected
drive. This is equivalent to the “print” option of the badblock com-
mand.
Set defaults displays the current list of global program defaults, and
the label for the currently selected drive.
Set label allows the user to enter the information for the disk label, eg.
the Serial number of the disk and the type of the disk.
Set unit	 selects	 the	 current	 disk	 drive	 unit	 (“0”	 or	 “1”),	 or	 the	 floppy	
(“f”)	 drive.	 Only	 one	 floppy	 drive	 is	 supported.	
Set verbose turns on or off verbose (debugging) output.
Set writelock turns on or off software write lock of the disks. Wri-
telock must be turned off before exercise will write any disk blocks.

tape
This command is the special purpose command to build or rebuild the
disk	 from	 a	master	 configuration	 tape.	 It	 will	 prompt:

Fex 4.4> Tape to Disk copy
	 	 Tape	 file	 (2)?
 Unit (0)?
 File System (a)?
	 	 Copying	 8925K	 in	 119	 blk	 chunks	 from	 tape	 file	 2	 to	 md0a
 Type ‘go<return>’ to begin...

When you type “go<return>”, the output will be:

- 9 -

 Copy started...
 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
 Tape to Disk Copy complete
Fex 4.4>

In this example, all of the default parameters were used. The root
file	 system	 on	 the	 master	 configuration	 tape	 is	 in	 file	 2.	 The	 loading	 of	
the	 root	 file	 system	 is	 complete	 and	 afterwards,	 unix	 can	 be	 booted	
from the disk.

The disk label must be set up correctly before the tape copy rou-
tine is used.

Error Messages
The above discussion listed most of the warning messages that fex pro-

duces. Other warnings are self explanatory.
There are many error messages output by fex and we’ve tried to make

them as self-explanatory as possible.

Ipfex

Interphase Disk Formatter And Exerciser

V2.0

Introduction
Ipfex is a Formatter and Exerciser (thus its name) for SMD disk drives on

the IRIS 1500. It will handle one or two drives, and supports any combina-
tion of FUJITSU 2351A (eagles) and Fujitsu 2312 drives. Ipfex also manages
disk labels, which are software labels describing the type of drive, how the
drive is partitioned logically, and bad track information. Ipfex will also copy
all or portions of disks from one drive to another and it will copy tapes to
disk.	 Ipfex	 can	 also	 be	 used	 to	 format	 and	 exercise	 floppies	 (see	 set unit
below).

Theory of operation
Most commands and data to ipfex should not be followed with carriage
returns except for numbers and strings which must end with a carriage
return. When single character commands are expected, ipfex will complete
the command or request immediately, usually asking for further input.
Strings and numbers may be edited using backspace key to delete the previ-
ous character, and Control-U to delete all characters back to the last prompt.
A DELete key pressed at any time will return to the top level command
prompt:

Ipfex 2.0 >
When ipfex starts up its herald will look like:

SGI Formatter/Exerciser 2.0 September 24, 1984
Initialize drive 0
 Name: <drive name>, Serial: <drive serial #>
Ipfex 2.0>

If the drive has no label, (i.e., hasn’t been run through ipfex or the manufacturing
disk exerciser), the start up will be:

No label—Type of drive (eagle)?
If you answer “?<return>” you will be given a list of the known drives
(eagle or Fujitsu 2312 for now). Enter a “<return>” to accept the default
(eagle), or enter “2312<return>” if Drive 0 is an Fujitsu 2312. You will then
get:

- 2 -

 Using default label
Ipfex 2.0>

Which reminds the user that the drive name (e.g., Beta Release 1.7, etc.),
serial number, and bad block information needs to be entered.

At the Ipfex 2.0> prompt, use “h” to obtain a help message, which will
look like:

Ipfex 2.0> Help--Commands are:
 badblock - enter bad block edit mode
 copy - copy data
 exercise - run drive read/write/seek tests
 format - format the selected drive
 help - print this message
 initialize - initialize drive & read label
 mapbad - map out a bad track
 quit - quit; return to IRIS monitor
 set - set miscellaneous variables
 tape - tape copy to disk utility

To	 select	 a	 command,	 enter	 the	 first	 character	 of	 the	 command.	 The	 next	 sec-
tion describes each command in detail.

Ipfex	 will	 be	 used	 in	 the	 field	 for	 several	 purposes.	 The	 customer	 will	
use ipfex to restore a disk from tape and map out bad tracks which develop
over time under normal operating conditions. The command mapbad is pro-
vided for this purpose, and should be needed very rarely. Another use of
ipfex will be to reformat a disk if its formatting information is lost. This can
happen if a power supply should fail while the disk is running, or a power
failure should occur during a disk write operation.

When a disk is formatted, all data on the disk is destroyed, so this
should only be done with a new disk, or with a complete disk backup, either
from tape or from another disk.

To operate on Drive #1 rather than Drive #0 (the default), use the set
unit command (see below).

Commands/Tests

badblock
This command will prompt:

Bad Block edit, type h for help
 bb>

and “h” will produce the message:

- 3 -

bb> Help--choose one of
 add bad blocks
 clear bad block list
 edit list
 print list
 quit
 setup alternates
 zap alternate assignments

Use add to enter new bad blocks to the bad block list tor the currently
selected drive (see set below). The entry format is cylinder/head,
where the cylinder and head are read directly from the track list pro-
vided by the drive manufacturer. A session might look like:

bb> Add new entries. Mode cyl/hd(/sec), end with a blank line:
bb add: 45/5
bb add: 103/0
bb add: 200/0
bb add: 450/3
bb add:
bb>

End the bad block list with a blank line (i.e., simply press
“<return>”). If the “/head” is left off, the previous bad block’s head
will be used, and printed out as if you had typed it. For ease of entry,
a “.” may be used in place of the “/” between the cylinder and the
head, facilitating the use of the numeric key pad at the right of the
keyboard. The <ENTER> key on the number pad is the same as
<return>.
Use clear to delete the current list. This is useful if you’ve entered the
wrong list, or the list is wrong because it was copied from another
drive.
Use edit to repair any typographical errors. A session (using the above
entered bad blocks) would look something like:

 bb> Edit bad blocks:
For each bad block, press ‘space’ to keep, ‘d’ to delete, ‘q’ to quit...
 bb edit 45/5? Kept
 bb edit 103/0? Deleted
 bb edit 200/0? Kept
 bb edit 450/3? Kept
 bb>

In this example, the second bad block (103/0) was deleted (“d” typed)
from the bad block list, and the rest were kept (“<SPACE>” typed).
Use print to print the current list of bad blocks. This should be done
prior to formatting to verify that the list is correct. This command is
the same as set badblocks . The list shows only the bad tracks unless the
verbose	 flag	 is	 set	 (see	 set below), in which case the assigned alternate

- 4 -

tracks are also listed.
Use quit to return to the Ipfex 2.0> prompt and leave bad block
mode.
Use setup to assign alternate tracks to newly entered bad tracks. This
is done automatically when the drive is formatted, but can be done by
hand to see the assigned alternates.
Use zap to clear the assigned alternate associations. This should be
done if a bad block was added to an existing bad block list and the
drive is going to be reformatted. Normally, associations between bad
tracks and alternates are preserved to retain data integrity, but if the
drive is going to be reformatted, the alternate association should be
redone	 for	 layout	 efficiency.

copy
This command copies data between drives. It can be used to copy data
from a good system disk to a newly formatted drive. Be careful not to
write To your good system disk! A copy session will look something
like:

Ipfex 2.0> Copy Data
From:
Disk Unit (0)=
Disk address (cyl/hd(/sec))(0/0/0)?
To:
Disk Unit (1)=
Initialize drive 1
 Name <some name>, Serial: <serial>
Disk address (cyl/hd(/sec))(0/0/0)?
of sectors per transfer (chunk)(880)?
of chunks to transfer (842)?
Verify? Yes
..
.....................
Copy complete!
Label on drive 1 needs updating... do it? Yes
Ipfex 2.0>

The numbers in parentheses are the defaults which will be used if a
<return> is typed. The From and To units may be the same, and
specify which drive to read and write respectively. (If either of the
drives has not been initialized, it will be initialized when the unit is
specified,	 thus	 the	 “Initialize	 drive	 1”	 message	 in	 the	 above	 example).	
The From and To disk addresses are the starting point for the transfer.
The # of sectors per transfer will default to one cylinder, and the # of
chunks to transfer will default to the whole disk. If you answer “v” to
Verify,	 each	 chunk	 written	 will	 be	 read	 and	 verified	 against	 the	 original	
data. Each “.” represents 10 chunks, and thus there are 97 of them in
this example. When the copy completes, the target drive label will

- 5 -

need to be updated if it was over-written by the copy (which it was in
this	 case);	 answer	 “y”.	

exercise
This command enters the disk exerciser portion of Ipfex 2.0>. Its prompt
and help message are:

Ipfex 2.0> Exercise
 Drive: eagle Unit=0, (837+5/20/44(512)) ILV=1
***Warning: set write lock off to scribble on the disk
Which exercise? Help--Choose from:
 complete write/read multi pass/multi pattern
 error display/reset
 quit
 random reads
Which exercise?

You will get the warning about the writelock only if the software write
lock is on. Use set writelock to turn it off if you really want to scribble
on a disk.
Most of these exercises are used for diagnostic purposes to qualify and
time a new disk drive. Only the complete and error display commands
should	 be	 used	 in	 the	 field.	 The	 complete test will prompt:

Which exercise? Complete Exercise -- track writes and reads
Repeat how many times? Forever
Alternate units? No
Unit 0: Pattern 0xB1B6DB6D
 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320
330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480
490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640
650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800
810 820 830
Pass 1 Unit 0 bad 0 retries 0 total bad 0
Unit 0: Pattern 0xB1F6DB6D

To the “Repeat” question, press “<return>” to select “Forever”, oth-
erwise enter the number of loops desired and press “<return>”. To
the “Alternate units” question, if you answer “n”, only the currently
selected drive will be exercised, otherwise, both drives will be exer-
cised.	 Various	 data	 patterns	 will	 be	 written,	 read	 and	 verified	 sequen-
tially to the whole disk (or disks). If any errors are encountered, mes-
sages will be printed, and a summary of good and bad passes will be
output at the end of each pass of the test.
After exercising a disk, use error display/reset to print out the cumulative
error information from the exercise. If bad spots are reported which
are not in the bad block lists for each drive, add them to the bad block
lists, and reformat each drive as necessary. Before retesting the drive

- 6 -

using the complete test remember to reset the error information for a
correct reading of the disk errors.

format
This command will format the currently selected disk drive. When
selected, it will prompt:

Ipfex 2.0> Format disk.
***WARNING - ALL DATA ON UNIT 0 WILL BE LOST!!!
 Drive: eagle Unit=0 (837+5/20/44(512)) ILV=1
***WARNING - No bad blocks!!!
Type ‘go<return>’ to start...

The Unit will be the currently selected unit (see set below). The drive
information should correspond properly to the type of drive in the sys-
tem (otherwise, the label was set up improperly, and should be
changed using set label). The “No bad blocks” warning will only be
printed if no bad blocks have been entered for the drive (see badblock
above). When you type “go<return>”, the output will be:

Starting format...
 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320
330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480
490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640
650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800
810 820 830 840
Formatting bad tracks...
Writing label...
Formatting complete.

Formatting will rarely produce any errors, so it is wise to run “exercise
complete” after every format.

help
This command produces the help message displayed above.

initialize
This command reads the label from the currently selected drive,
overwriting the in-core copy. It will prompt:

Ipfex 2.0> Initialize drive 0
***Warning: in-core label newer than disk copy.
***Clobber in-core label? y
Name: drive name, Serial: #####

If	 you	 have	 modified	 the	 in-core	 label,	 either	 by	 set label or changing
the bad block list, you will receive the warning shown above. Answer
“y<return>”	 if	 you	 want	 to	 undo	 your	 label	 modifications	 and	 return	
to the label on the disk. If you answer anything but “y”, the in-core
label will be preserved, and the initialize aborted. If the drive has no
label at all, you will get:

- 7 -

Ipfex 2.0> Initialize drive 0
 No label--Type of drive (eagle)?
 Using default label

At the type of drive prompt, type a “?” to obtain a list of the known
drive types, or a < return > to use the default type (as shown in the
parentheses). If the label on the drive is unreadable (i.e., it has not
even been formatted), you may get a disk error message printed before
the “No label” line. This is normal, and indicates that the drive needs
to be formatted.

mapbad
This command will add a bad track to an active disk. That is, if a bad
spot develops on the disk while it is in use, this command will substi-
tute a good track for the bad one, and copy data from the bad track to
the new alternate. It will prompt:

Ipfex 2.0> Map a bad track
 Name: drive name, Serial: ###
 Bad track: Cylinder: 123 Head: 5
 Reading old data into memory...
 Re-formatting bad track and its alternate...
 Re-writing data to new track...
 Re-writing label
Track remap complete.

WARNING: Insure that the drive label has all of the known bad blocks
(from	 the	 list	 on	 the	 drive)	 recorded.	 If	 NOT	 -	 set	 the	 blocks	 first,	 then	
issue the mapbad command. If there is a problem reading a sector of
the	 specified	 bad	 track,	 you	 will	 get	 error	 messages	 after	 the	 “Reading	
old data” line. If after 10 failures at reading a sector, you will be
prompted with:

Old data read error: Retry/Skip/Quit/Verbose?
Answer “r”, “s”, “q”, or “v” as appropriate. You may want to retry a
few times, then skip the bad sector. If you skip a sector, remember that
its data will be lost, which may be the only way to solve the prob-
lem.
Once the old track has been read, the old and new tracks are reformat-
ted, and the saved data is written to the new track. If the data rewrite
produces errors, it means that there are problems with the newly
assigned alternate track. This probably indicates a more severe drive
problem, and the whole drive should be re-formatted and exercised,
and perhaps exchanged. NOTE: re-formatting will erase all data, so
perform	 a	 full	 backup	 first.

- 8 -

quit
This command exits from ipfex. It prompts:

Ipfex 2.0> Quit Label on drive 0 needs updating... do it? y
--confirm	 quit	 with	 “y”:	 y

If one or both of the drives need their labels updated, you will be
asked	 if	 they	 should	 be	 re-written;	 answer	 yes.	 Finally,	 confirm	 the	
quit with “y<return>” and you will be returned to the IRIS> prom
monitor prompt.

set
This	 command	 is	 a	 general	 purpose	 variable	 and	 parameter	 modifier.	
Its prompt and help message are:

Ipfex 2.0 > Set ? Set commands are:
badblocks - display current drive bad block list
defaults - display settings
label - set up the label
unit - select unit for testing (0/1/f)
verbose - verbose (on/off)
writelock - write lock switch (on/off)

Set badblocks displays the list of bad blocks for the currently selected
drive. This is equivalent to the “print” option of the badblock com-
mand.
Set defaults displays the current list of global program defaults, and the
label for the currently selected drive.
Set label allows the user to enter the information for the disk label, eg.
the Serial number of the disk and the type of the disk.
Set unit	 selects	 the	 current	 disk	 drive	 unit	 (“0”	 or	 “1”),	 or	 the	 floppy
(“f”)	 drive.	 Only	 one	 floppy	 drive	 is	 supported.
Set verbose turns on or off verbose (debugging) output.
Set writelock turns on or off software write lock of the disks. Writelock
must be turned off before exercise will write any disk blocks.

tape
This command is the special purpose command to build or rebuild the
disk	 from	 a	master	 config	 tape.	 It	 will	 prompt:

Ipfex 2.0> Tape to Disk copy
	 	 Tape	 file	 (2)?
 Unit (0)?
 File System (a)?
	 	 Copying	 14080K	 in	 880	 blk	 chunks	 from	 tape	 file	 2	 to	 ip0a
 Type ‘go<return>’ to begin...

When you type “go<return>”, the output will be:

- 9 -

 Copy started...
 2 4 6 8 10 12 14 16
 Tape to Disk Copy complete
Ipfex 2.0>

In this example, all of the default parameters were used. The root
file	 system	 on	 the	 master	 configuration	 tape	 is	 in	 file	 2.	 The	 loading	 of	
the	 root	 file	 system	 is	 complete	 and	 afterwards,	 unix	 can	 be	 booted	
from the disk.

The disk label must be set up correctly before the tape copy rou-
tine is used.

Error Messages
The above discussion listed most of the warning messages that ipfex pro-

duces. Other warnings are self explanatory.
There are many error messages output by ipfex and we’ve tried to make

them as self-explanatory as possible.

Release GL1-W2.1

Appendix C

New Manual Pages

Release GL1-W2.1

Version 2.1 - 1 - February 1985

ADB(1) Silicon Graphics ADB(1)

NAME
adb – debugger

SYNOPSIS
adb [–w]	 [objfil	 [corfil]]

DESCRIPTION
Adb is a general purpose debugging program. It may be used to examine
files	and	to	provide	a	controlled	environment	for	the	execution	of	UNIX pro-
grams.
Objfil	is	usually	an	executable	program	file,	preferably	containing	a	symbol	
table;	if	not,	then	the	symbolic	features	of	adb cannot be used although the
file	can	still	be	examined.	The	default	for	objfil is a.out. Corfil is assumed to
be	a	core	image	file	produced	after	executing	objfil;	 the	default	for	Corfil is
core.
Requests to adb are read from the standard input and responses are to the
standard output. If the –w	 flag	 is	 present,	 then	 both	 objfil and corfil are
created	if	necessary	and	opened	for	reading	and	writing	so	that	files	can	be	
modified	using	adb. Adb ignores QUIT;	 INTERRUPT causes return to the next
adb command.
To exit adb use $q or $Q or Control-d.
In general requests to adb are of the form

[address] [, count] [command]	 [;]
If address is present, then dot is set to address. Initially dot is set to 0. For
most commands count	specifies	how	many	times	the	command	will	be	exe-
cuted. The default count is 1. Address and count are expressions.
The interpretation of an address depends on the context it is used in. If a
subprocess is being debugged, then addresses are interpreted in the usual
way in the address space of the subprocess. If the operating system is being
debugged	either	post-mortem	or	using	the	special	file	/dev/kmem to interac-
tive examine and/or modify memory, the maps are set to map the kernel vir-
tual addresses. For further details of address mapping see Addresses.

Expressions
. The value of dot.
+ The value of dot incremented by the current increment.
^ The value of dot decremented by the current increment.
" The last address typed.
integer	 A	number.	The	prefix	0	(zero)	forces	 interpretation	in	octal	radix;	

the	prefixes	 0d	 and	 0D	 force	 interpretation	 in	decimal	 radix;	 the	
prefixes	0x	and	0X	force	interpretation	in	hexadecimal	radix.	Thus	
020	 =	 0d16	 =	 0x10	 =	 sixteen.	 If	 no	 prefix	 appears,	 then	 the

Version 2.1 - 2 - February 1985

ADB(1) Silicon Graphics ADB(1)

 default radix	is	used;	see	the	$d	command.	The	default	radix	is	ini-
tially hexadecimal. The hexadecimal digits are 0123456789abcde-
fABCDEF with the obvious values. Note that a hexadecimal
number	whose	most	significant	digit	would	otherwise	be	an	alpha-
betic	character	must	have	a	0x	(or	0X)	prefix	(or	a	leading	zero	if	the	
default radix is hexadecimal).

’cccc’ The ASCII value of up to 4 characters. \ may be used to escape an
’.

< name The value of name, which is either a variable name or a register
name. Adb maintains a number of variables (see Variables) named
by single letters or digits. If name is a register name, then the value
of the register is obtained from the system header in corfil. The
register names are those printed by the $r command.

symbol A symbol is a sequence of upper or lower case letters, underscores
or digits, not starting with a digit. \ may be used to escape other
characters. The value of the symbol is taken from the symbol table
in objfil. An initial _ or ~ will be prepended to symbol if needed.

_symbol In C, the "true name" of an external symbol begins with _ . It may
be necessary to utter this name to distinguish it from internal or
hidden variables of a program.

(exp) The value of the expression exp.
Monadic operators:
*exp The contents of the location addressed by exp in corfil.
@exp The contents of the location addressed by exp in objfil.
–exp Integer negation.
~exp Bitwise complement.
#exp Logical negation.
Dyadic operators are left associative and are less binding than monadic
operators.
e1+e2 Integer addition.
e1–e2 Integer subtraction.
e1*e2 Integer multiplication.
e1%e2 Integer division.
e1&e2 Bitwise conjunction.
e1|e2 Bitwise disjunction.
e1#e2 E1 rounded up to the next multiple of e2.

Version 2.1 - 3 - February 1985

ADB(1) Silicon Graphics ADB(1)

Commands
Most	commands	consist	of	a	verb	followed	by	a	modifier	or	list	of	modifiers.	
The following verbs are available. (The commands "?" and "/" may be fol-
lowed	by	 "*";	 see	Addresses	 for	 further	details.)
?f Locations starting at address in objfil are printed according to the

format f. Dot is incremented by the sum of the increments for
each format letter (q.v .).

/f Locations starting at address in corfil are printed according to the
format f, and dot is incremented as for "?".

=f The value of address itself is printed in the styles indicated by the
format f. (For i format "?" is printed for the parts of the instruc-
tion that reference subsequent words.)

A format consists of one or more characters that specify a style of printing.
Each format character may be preceded by a decimal integer that is a repeat
count for the format character. While stepping through a format, dot is
incremented by the amount given for each format letter. If no format is
given, then the last format is used. The format letters available are as fol-
lows:

i n Disassemble the addressed instruction.
o 2 Print 2 bytes in octal. All octal numbers output by adb are pre-

ceded by 0.
O 4 Print 4 bytes in octal.
q 2 Print in signed octal.
Q 4 Print long signed octal.
d 2 Print in decimal.
D 4 Print long decimal.
x 2 Print 2 bytes in hexadecimal.
X 4 Print 4 bytes in hexadecimal.
u 2 Print as an unsigned decimal number.
U 4 Print long unsigned decimal.
f	 4	 Print	 the	32-bit	value	as	a	floating	point	number.
F 8 Print double (SGI long float)	floating	point.
b 1 Print the addressed byte in octal.
c 1 Print the addressed character.
C 1 Print the addressed character using the standard escape conven-

tion where control characters are printed as ^X and the delete
character is printed as ^?.

s n Print the addressed characters until a zero character is reached.
S n Print a string using the ^X escape convention (see C above).

The n is the length of the string including its zero terminator.
Y 4 Print 4 bytes in date format (see ctime(3C)).

Version 2.1 - 4 - February 1985

ADB(1) Silicon Graphics ADB(1)

a 0 Print the value of dot in symbolic form. Symbols are checked to
ensure that they have an appropriate type as indicated below.

/ global data symbol
? global text symbol
= global absolute symbol

p 4 Print the addressed value in symbolic form using the same rules
for symbol lookup as a.

t 0 When preceded by an integer tabs to the next appropriate tab
stop. For example, 8t moves to the next 8-space tab stop.

r 0 Print a space.
n 0 Print a newline.
"..." 0 Print the enclosed string.
^ Dot is decremented by the current increment. Nothing is

printed.
+ Dot is incremented by 1. Nothing is printed.
– Dot is decremented by 1. Nothing is printed.

newline
 Repeat the previous command with a count of 1.
[?/]l value mask
 Words starting at dot are masked with mask and compared with value

until a match is found. If L is used, then the match is for 4 bytes at a
time instead of 2. If no match is found, then dot	 is	unchanged;	other-
wise, dot is set to the matched location. If mask is omitted, then –1 is
used.

[?/]w value ...
 Write the 2-byte value into the addressed location. If the command is

W, write 4 bytes. Odd addresses are not allowed when writing to the
subprocess address space.

[?/]m b1 e1 f1[?/]
 New values for (b1, e1, f1) are recorded. If less than three expressions

are given, then the remaining map parameters are left unchanged. If
the "?" or "/" is followed by "*", then the second segment (b2, e2, f2)
of the mapping is changed. If the list is terminated by "?" or "/", then
the	 file	 (objfil or corfil respectively) is used for subsequent requests.
(So that, for example, "/m?" will cause "/" to refer to objfil.)

>name
 Dot is assigned to the variable or register named.
! A shell is called to read the rest of the line following "!".
$modifier
 Miscellaneous commands. The available modifiers are:

Version 2.1 - 5 - February 1985

ADB(1) Silicon Graphics ADB(1)

< f	 Read	commands	from	the	file	 f. If this command is executed in a
file,	further	commands	in	the	file	are	not	seen.	If	 f is omitted, the
current input stream is terminated. If a count is given, and is zero,
the command will be ignored. The value of the count will be
placed in variable 9	 before	 the	first	 command	 in	 f is executed.

<< f Similar to <	 except	 it	 can	be	used	 in	a	file	of	commands	without	
causing	the	file	to	be	closed.	Variable	9 is saved during the execu-
tion of this command, and restored when it completes. There is a
(small)	 finite	 limit	 to	 the	 number	 of	<<	 files	 that	 can	 be	 open	 at	
once.

>f	 Append	output	 to	 the	file	 f, which is created if it does not exist.
If f is omitted, output is returned to the terminal.

? Print process ID, the signal which caused stoppage or termination,
as well as the registers as $r. This is the default if modifier is omit-
ted.

r Print the general registers and the instruction addressed by pc.
Dot is set to pc.

b Print all breakpoints and their associated counts and commands.
c C stack backtrace. If address is given, then it is taken as the

address of the current frame (instead of a7). If count is given,
then	only	 the	first	 count	 frames	are	printed.

d Set the default radix to decimal.
w Set the page width for output to address (default 80).
s Set the limit for symbol matches to address (default 255).
x Interpret integer input in hexadecimal radix.
q Exit from adb.
v Print all non zero variables in octal, .
m Print the address map.

:modifier
Manage	a	 subprocess.	Available	modifiers	are:
bc Set breakpoint at address. The breakpoint is executed count–1

times before causing a stop. Each time the breakpoint is encoun-
tered the command c is executed. If this command is omitted or
sets dot to zero then the breakpoint causes a stop.

d Delete breakpoint at address.
r Run objfil as a subprocess. If address is given explicitly then the

program	is	entered	at	this	point;	otherwise	the	program	is	entered	
at its standard entry point, count	specifies	how	many	breakpoints	
are to be ignored before stopping. Arguments to the subprocess
may be supplied on the same line as the command. An argument
starting with < or > causes the standard input or output to be
established for the command. All signals are turned on on entry
to the subprocess.

Version 2.1 - 6 - February 1985

ADB(1) Silicon Graphics ADB(1)

cs The subprocess is continued with signal s (see signal (2)). It address
is given, then the subprocess is continued at this address. It no
signal	 is	 specified,	 then	 the	 signal	 that	 caused	 the	 subprocess	 to	
stop is sent. Breakpoint skipping is the same as for r.

s Single step the subprocess count times.
k The current subprocess, if any, is terminated.

Variables
Adb provides a number of variables. Named variables are set initially by adb
but are not used subsequently. Numbered variables are reserved for com-
munication as follows:

0 The last value printed.
1 The last offset part of an instruction source.
9 The count on the last $< or $<< command.

On entry the following are set from the system header in the corfil. If corfil
does not appear to be a core	 file,	 then	 the	 following	 values	 are	 set	 from	
objfil:

b The base address of the data segment.
d The data segment size.
e The entry point.
m The "magic" number (0407, 0410).
s The stack segment size.
t The text segment size.

Addresses
The	address	in	a	file	associated	with	a	written	address	is	determined	by	a	
mapping	associated	with	that	file.	Each	mapping	is	represented	by	two	tri-
ples (b1, e1, f1 and (b2, e2, f2	and	the	file	address	corresponding	to	a	written	
address is calculated as follows:

b1 ≤ address < e1 => file address =address + f1 – b1, otherwise,
b2 ≤ address < e2 => file address =address + f2 – b2,

otherwise, the requested address is not legal. If a ? or / is followed by an *,
then only the second triple is used.
The initial setting of both mappings is suitable for normal a.out and core
files.	If	either	file	is	not	of	the	kind	expected,	then	for	that	file	b1 is set to 0,
e1	 is	set	 to	the	maximum	file	size	and	 f1	 is	set	 to	0;	 in	this	way	the	whole	
file	 can	be	examined	with	no	address	 translation.
So that adb	may	 be	 used	 on	 large	 files	 all	 appropriate	 values	 are	 kept	 as

Version 2.1 - 7 - February 1985

ADB(1) Silicon Graphics ADB(1)

signed 32-bit integers.

EXAMPLE
adb obj1

will invoke adb	with	the	executable	object	"obj1";	when	adb responds with:
ready

the request:
main, 10?ia

will cause 16 (10hex) instructions to be printed in assembly code, starting
from location "main".

FILES
a.out
core

SEE ALSO
a.out(4), core(4)

DIAGNOSTICS
Adb when there is no current command or format. Comments about inac-
cessible	 files,	 syntax	 errors,	 abnormal	 termination	 of	 commands,	 etc.	 Exit	
status is 0, unless last command failed or returned nonzero status.

BUGS
Use of # for the unary logical negation operator is peculiar.
When stopping at the entry to a function, the breakpoint should be placed
at routine+4, rather than at routine. This causes the link to be done before
the breakpoint, and makes a stacktrace work better.
There is no way to clear all breakpoints.
A	floating	point	number	cannot	be	written	 into	memory	 (i.e.,	using	 the	w
command).
This version of adb is capable only of recognizing hexadecimal and decimal
input radices.

Version 2.1 - 1 - February 1985

ARCH(1D) Silicon Graphics ARCH(1D)

NAME
arch – display a simulated architectural model

SYNOPSIS
/usr/people/demos/arch

DESCRIPTION
Arch displays a model of an imaginary city block. Operator controls adjust
the viewing position and select one or several structures for display.
Most user interface is through the mouse buttons. Each non-zero combina-
tion of mouse buttons causes a different viewpoint movement. The mouse
valuators are ignored.
In the default case, a single building is displayed. Type an s to turn on (or
off) wireframe buildings that complete the block. Type f To cover (or uncov-
er) the building surfaces. Type r to initialize the program and h for a help
menu that lists the mouse functions.

AUTHOR.
Gary Tarolli

Version 2.1 - 1 - February 1985

CAR(1D) Silicon Graphics CAR(1D)

NAME
car – display of car body in wireframe & surface form

SYNOPSIS
/usr/people/demos/car

DESCRIPTION
A car body is viewed in wireframe form. Once the car is positioned, the sur-
face	patches	are	filled	 in	 to	give	a	 rendered	 image	of	 the	 car.

Mousebuttons Function

left mouse x-motion controls view azimuth,
mouse y-motion controls view elevation

left & middle mouse x-motion controls view distance
middle & right toggle between wireframe & rendered images

The appropriate viewing action taken as a result of mousebutton control is
briefly	flashed	 in	 the	 in	 the	 lower	 left/right	hand	comers	of	 the	 screen.

HARDWARE REQUIREMENTS
Car requires 12 bitplanes.

Version 2.1 - 1 - February 1985

CC(1) Silicon Graphics CC(1)

NAME
cc, pc, f77 – C, Pascal and FORTRAN compilers tor the 68000

SYNOPSIS
cc	 [options]	files	 ...	
pc	 [options]	files	 ...	
f77	 [options]	files	 ...

DESCRIPTION
Cc is the UNIX C, Pascal and Fortran compiler for the 68000. It is also avail-
able under the names f77 and pc. The names are synonymous except during
the linking phase, when it is used to create the appropriate run time
environment. Cc	accepts	many	types	of	input	files,	determined	by	the	file’s	
suffix.	The	highest	form	of	input	is	language	source	—	C	(.c), Pascal (.p) or
FORTRAN (.f). These are translated to the language’s intermediate format
(68000 assembler (.s), in the case of C, and a special object format (.j), in the
case	 of	 FORTRAN	 and	 Pascal),	 then	 to	UNIX	 object	 files	 (.o),	 and	 finally	
to	 an	 executable	 file,	 usually	 called	 a.out. Input to cc may consist of any
of	 these	 types	of	files	and	 translation	may	be	 stopped	at	 any	point.
Translation proceeds as follows:
a) Each .c, .p and .f input is run through the C macro preprocessor

cpp. In the case of Pascal source, cpp is given the –p switch. This
switch tells cpp to ignore Pascal-style comments and do the correct
things with preprocessor control lines so that the line numbers in
the	 resultant	Pascal	file	will	be	 the	 same	as	 the	original.

b)	 The	preprocessed	C	files	are	then	run	through	the	C	compiler	ccom
and,	 if	 specified,	 the	C	optimizer	c2. The resulting .s	files	are	 then	
assembled, producing UNIX objects (.o).

c) Preprocessed FORTRAN (.f) and Pascal (.p)	 files	 are	 run	 through	
the appropriate SVS front end, fortran or pascal, then through the
code generator code,	 producing	 special	 object	 files	 (.j). All special
object	 files	 are	 combined	 with	 the	 FORTRAN/Pascal	 library	 and	
passed	to	an	object	file	formatter	ulinker, producing a single UNIX
object	file	 (.o).

d)	 Finally,	 all	 UNIX	 object	 files	 are	 passed	 to	 ld(1), along with the
UNIX	startup	file	 /lib/crt0.o, to produce a single executable named
a.out.

Preprocessed	 source	 files	 and	 assembler	 files	 are	 usually	 removed.	All	 C	
objects (.o)	and	special	object	files	(.j) are preserved, unless there was only a
single	 input	 c	file.
If	C	and	FORTRAN	files	are	mixed	in	a	single	executable,	special	interface	
routines must be generated as described in Appendix D of the IRIS Worksta-
tion Guide. If C and Pascal procedures are mixed, the user should consult

Version 2.1 - 2 - February 1985

CC(1) Silicon Graphics CC(1)

the SVS Pascal reference manual for instructions on altering the external
procedure declarations in Pascal.

Options
The following options are interpreted by cc (f77,pc). Some options have
meaning for only one of these languages, (see ld(1) for load-time options):
–c Suppress the loading phase of the compilation, and force an object

file	 to	be	produced	even	 if	only	one	 source	file	 is	given.
–g Generate debugging information. Currently, this does not have

meaning when C is intermixed with another language. For FOR-
TRAN	and	Pascal	files,	the	appropriate	compiler	will	be	called	with	
the +d switch and the symbol table produced by the pre–linker will
be placed in x.dbg, where x	 is	 the	name	of	 the	final	program.	For	
pure C programs, additional symbol table information will be gen-
erated for dbx(1).

–k Include libx.a as a library ld	should	search	for	undefined	references.	
Ld	will	look	for	the	library	first	in	the	directory	/lib, then in /usr/lib,
and	finally	in	/usr/local/lib	until	it	finds	it.	The	string	x may be more
than one character.

– –n Normally, cc passes the –n switch to ld, which causes it to load the
program with shared text. The – –n switch suppresses the passing of
–n to ld.

–o output
	 Name	 the	final	output	file	output instead of a.out.
–p Tell ccom to generate code to count subroutine calls for use with

prof.	Neither	FORTRAN	nor	Pascal	 support	profiling.
– –x By default, cc passes a –x	flag	to	ld, in order to suppress local sym-

bols	from	the	final	symbol	table.	The	– –x	flag	inhibits	this	default.	
Note that there are two dashes.

–C prevent the macro preprocessor from removing C style comments
found in the source. Such comments are always removed from Pas-
cal programs.

–Dname=def
–Dname
	 Define	name to the preprocessor, as if by #define.	 If	no	definition	is	

given,	 the	name	 is	defined	as	 "1".
–E Run only the macro preprocessor on the named C, Pascal and FOR-

TRAN source, and send the result to standard output.
–Idir Look in directory dir for missing #include	files.	Include	files	whose	

names are surrounded by double quotes and do not begin with ‘/’
are	 always	 sought	 first	 in	 the	 directory	 of	 the	 input	 file,	 then	 in

Version 2.1 - 3 - February 1985

CC(1) Silicon Graphics CC(1)

 directories named in –l options, then in /usr/include,	 and	finally	 in	
/usr/local/include.	Include	files	names	beginning	with	‘/’	are	treated	
as	 absolute	 paths.	 Include	 files	 whose	 names	 are	 surrounded	 by	
angle brackets (<) and (>) are not looked for in the directory of
the	 input	file.

–L	 Produce	an	assembly	listing	tor	each	C	or	assembler	source	file,	and	
a	FORTRAN	listing	of	each	FORTRAN	source	file.	Assembler	 list-
ings	have	 the	 suffix	 .lst	 and	FORTRAN	 listings	have	 the	 suffix	 .l.

–Oxx	 Invoke	 an	 object–code	 optimizer	 on	 each	 C	 file.	 xx are optional
flags	 to	c2. Possible options are S (perform stack optimizations), P
(remove stackprobes), K (omit kernel optimizations). Use of these
options is not recommended for the standard compilation environ-
ment.

–P Run only the macro preprocessor on the named C, FORTRAN, and
Pascal	files,	 and	place	 the	 results	on	file.i.

–S	 Compile	 the	named	files,	 leaving	the	C	assembly	 language	output	
in	 files	 suffixed	 .s,	 and	 the	 FORTRAN	 and	 Pascal	 objects	 in	 files	
suffixed	 .j.

–Uname
	 Remove	any	 initial	definition	of	name.
–Zf	 Cause	 instructions	 for	 the	 Sky	floating	point	 processor	 to	 be	 gen-

erated. When this switch is used, the Sky math library –lmsky will
be substituted for the standard math library –lm	 if	 it	 is	 specified.	
Use	 of	 this	 switch	 on	 systems	 which	 do	 NOT	 have	 the	 floating	
point unit installed will cause a run time abort.

–Zg	 Load	the	program	with	the	special	files	and	libraries	necessary	for	
IRIS graphics programs. When this switch is used, the graphics
library –lg and the math library –lm (or –lmsky if the –Zf	 flag	has	
also	 been	 specified)	 are	 given	 by	 default.	 Special	 files	 must	 be	
loaded for using graphics with each source language. Hence, cc
must be able to determine the combination of languages involved in
the	 link	 step.	 If	 the	 compilation	 line	 specified	 f77, a FORTRAN
source	 file	 (with	 the	 extension	 .f)	 or	 the	 switch	 –ZF	 is	 given,	 cc
assumes that FORTRAN routines are present. In this case, the pro-
gram is also loaded with the FORTRAN graphics interface library
–lfgl	and	the	FORTRAN	object	file	containing	the	block	data	initial-
ization of the common areas DEVICE and GL (/usr/lib/fgldat.j). If the
compilation	 line	 specified	pc,	 a	Pascal	 source	file	 (with	 the	 exten-
sion p) or the switch –ZP is given, cc assumes that Pascal routines
are present. The program is loaded with the special Pascal jump
table (/usr/lib/pjmptbl.o), and ld is told to make only eight characters
significant	 in	 function	names	during	 calls	 to	 the	graphics	 library.

Version 2.1 - 4 - February 1985

CC(1) Silicon Graphics CC(1)

–Zi	filename
	 Use	the	file	named	filename as the run time startup, rather than the

standard C run time startup. This is useful for generating stan-
dalone programs.

–Zq Time all subprocesses, and report these times on stdout at the end
of the compilation.

–Zr Load the program for the remote graphics environment. If the
source contains FORTRAN or .j	files,	 the	FORTRAN	remote	grap-
hics library will be loaded, otherwise the C remote graphics library
will be loaded. As does loading the standard graphics library,
loading the remote graphics library automatically causes the math
library (–lm or –lmsky) to be loaded. If the program is a C program,
the directory /usr/include/rgl will be searched prior to /usr/include for
graphics	header	files.

–Zv Turn on verbose mode. In verbose mode, the C compiler ccom will
give	 additional	 diagnostics.	 This	 includes	 such	 things	 as	 flagging	
any use of the C type double, and complaining about too many
register declarations.

–Zz Print a trace of all exec() calls.
–ZA pass the remainder of the string to as. Thus, the cc switch –ZA–q

will pass as the switch –q.
–ZC pass the remainder of the string to ccom. Thus, the cc switch –ZA–v

will pass ccom the switch –v.
–ZF pass the remainder of the string to the FORTRAN compiler front-

end fortran. Thus, the cc switch –ZF+d will pass fortran the switch
+d. This switch (with or without a switch to pass to the FORTRAN
front–end) also informs cc	that	FORTRAN	files	were	present	in	the	
compilation.

–ZM Cause the FORTRAN pre–linker to generate a load map of the FOR-
TRAN	program.	This	will	be	placed	in	a	file	by	the	same	name	as	
the	executable	file	with	 the	added	extension	 .fmap.

–ZP	 Pascal	files	are	present	in	this	compilation,	cc cannot determine this
unless it sees a .p	file	or	 the	name	pc is used.

–ZZ Load the program for the standalone environment. This causes
substitutions to be made for the C library and the C run time
startup.

Other	flags	are	passed	to	 ld.	The	files	may	consist	of	any	mix	of	C,	object,	
FORTRAN,	 assembler,	 object	 or	 library	 files.	 The	 tiles	 are	 passed	 to	 ld, it
opted, in the order given, to produce an executable program named a.out or
that	 specified	by	 the	–o option.

Version 2.1 - 5 - February 1985

CC(1) Silicon Graphics CC(1)

FILES
file.c	 C	 source	file
file.f	 FORTRAN	source	file
file.p	 Pascal	 source	file
file.j	 Pascal	 and	FORTRAN	object	files
file.o	 object	 (relocatable)	file
file.s	 assembly	file
a.out	 executable	file
/lib/ccom C compiler
/lib/cpp C preprocessor
/lib/crt0.o run time startup
/lib/libc.a C library
/usr/lib/paslib.obj FORTRAN library
/usr/lib/fortran FORTRAN front-end
/usr/lib/pascal Pascal front-end
/usr/lib/code FORTRAN code-generator
/usr/lib/ulinker FORTRAN pre-linker
/bin/as assembler
/bin/ld linking loader
/usr/include default include directory
/usr/lib/fgldat.j block data routine for graphics commons
/usr/lib/pjmptbl.o Pascal graphics jump table and C string converter

SEE ALSO
IRIS Workstation Guide Appendices D and E
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-
Hall, 1978
B. W. Kernighan, Programming in C — a Tutorial
D. M. Ritchie, C Reference Manual
SVS FORTRAN Reference Manual
SVS Pascal Reference Manual
as(1), ccom(1), cpp(1), ld(1), extcentry(1), mkf2c(1), a.out(5)

BUGS
Two	bugs	are	currently	outstanding	in	the	C	compiler	system.	The	first	bug	
is the result of the compiler running out of temporary registers when com-
piling an expression as junk[c].i += a in a function which contains many
register variables. The compiler aborts with the message expression causes
compiler loop, try simplifying. Rather than to reserve an additional register for
the compiler’s internal use, it has been left to the user to alleviate this prob-
lem by reducing the number of data registers being used in this instance to
five	or	 less.
The second bug occurs when using the optimizer, c2. In certain situations,
the optimizer gets confused as to the boundary between functions when
optimizing functions which are declared as static. This can result in

Version 2.1 - 6 - February 1985

CC(1) Silicon Graphics CC(1)

optimizing away necessary register save/restore code at function entry and
exit. Although the problem occurs rarely even in conjunction with such
declarations, users are currently warned against declaring functions as static
when using the optimizer.

DIAGNOSTICS
The diagnostics produced by C, FORTRAN, and Pascal are intended to be
self-explanatory. Occasional messages may be produced by the assembler or
loader.

Version 2.1 - 1 - February 1985

CUBE(1D) Silicon Graphics CUBE(1D)

NAME
cube – real-time display of famous cube puzzle

SYNOPSIS
/usr/people/demos/cube

DESCRIPTION
Cube displays a moving, rotating, 3-D model of the well-known Rubik’s cube
puzzle. As the cube changes, the viewpoint translates in and out and
moves around and around the object. Hidden surfaces are removed in real
time. The mouse valuators and buttons control the display.
The motion will continue with the system unattended. This allows the pro-
gram to be used as a stress test for the geometry system.

AUTOMATIC OPERATION
For automatic operation of the cube, use the menu at the top left. Move the
cursor	to	the	menu	entry	for	the	desired	mode;	press	and	release	the	right	
mouse button to select it. The rotate mode makes the cube alter itself while
the viewpoint’s altitude and azimuth change. Translate makes the viewpoint
move back and forth. Both and Freeze do as one would expect.

MANUAL OPERATION
First select Freeze. The cube will come to rest as soon as its current internal
motion is complete.
To rotate a surface of the cube, put the cursor on it. Tap the left mouse
button	to	rotate	the	surface	counterclockwise;	the	right	one	to	turn	it	clock-
wise. If the side you wish to rotate is not visible, hold down the middle
button and move the cursor. This changes viewing altitude and azimuth to
bring the hidden surfaces into view.
The middle menu and the right button can tie the middle button to distance
and	field	of	view	rather	 than	altitude	and	azimuth.
Quit terminates the program. Reset initializes the program and, incidentally,
solves the cube.

AUTHORS
Herb Kuta and Kurt Akeley

HARDWARE CONFIGURATION
Eight bitplanes of memory are necessary.

Version 2.1 - 1 - February 1985

CURVE(1D) Silicon Graphics CURVE(1D)

NAME
curve – fast interactive cubic curve display

SYNOPSIS
/usr/people/demos/curve

DESCRIPTION
Curve rapidly draws any of several cubic curves. All control uses the mouse
and its buttons.
To change the display, press RIGHTMOUSE to display a popup menu.
Move the cursor till the menu option you select is highlighted and release
the button. To get rid of the menu without changing the display, move the
cursor clear of the menu and release the button.
Add Point and Delete Point place basis points on the plane. To add one or
more points, select Add Point , move the cursor to the point locations, and
press LEFTMOUSE once for each new point. Each point will be labeled
with a marker. As soon as four or more points are selected, they cubic
curve they determine with the current basis is drawn. In Delete Point is
selected, the nearest basis point to the cursor and the portion of the curve
affected by that point are colored. LEFTMOUSE will delete the point.
In Move Point mode, the point nearest the cursor and the affected part of the
curve are colored. LEFTMOUSE will move the point to the cursor. Hold
LEFTMOUSE down to drag the curve.
Select Motion to give each point a random direction and velocity. Select
Freeze to stop it. Basis, Linestyle, and Precision each present their own popup
menus. Vary their parameters with RIGHTMOUSE. Return to the main
menu from any of these with Quit.
Markers Off turns off the basis point markers. Markers On restores them.
Smear simulates families of curves. No Smear restores the single curve. 3-D
and 2-D select a 3-D box or the initial plane for the display.
Initialize reselects the initial state. Quit (from the main menu) terminates the
program.

AUTHORS
Rocky Rhodes and Herb Kuta

BUGS
The	Bezier	 curve	 looks	wrong	 if	more	 than	 four	points	are	 specified.	 It	 is	
not. It is discontinuous, but that’s the way M. Bezier designed it.

HARDWARE REQUIREMENTS
Eight bitplanes and 1.5 Megabytes of memory are required to run curve.

Version 2.1 - 1 - February 1985

DBX(1) Silicon Graphics DBX(1)

NAME
dbx – debugger

SYNOPSIS
dbx [–r] [–i] [–I dir] [objfile [coredump]]

DESCRIPTION
Dbx is a tool for source level debugging and execution of programs under
UNIX. The objfile	is	an	object	file	produced	by	a	compiler	with	the	appropri-
ate	flag	(usually	“–g”)	specified	to	produce	symbol	information	in	the	object	
file.	 On	 the	 IRIS	workstation,	 only	 cc(1) produces the appropriate source
information. The machine level facilities of dbx can be used on any pro-
gram.
The	object	file	contains	a	symbol	table	that	includes	the	name	of	the	all	the	
source	files	translated	by	the	compiler	to	create	it.	These	files	are	available	
for perusal while using the debugger.
If	 a	 file	 named	 “core”	 exists	 in	 the	 current	 directory	 or	 a	 coredump	 file	 is	
specified,	 dbx can be used to examine the state of the program when it
faulted.
If	the	file	“.dbxinit”	exists	in	the	current	directory	then	the	debugger	com-
mands in it are executed. Dbx also checks for a “.dbxinit” in the user’s
home directory if there isn’t one in the current directory.
The command line options and their meanings are:

–r Execute objfile immediately. If it terminates successfully dbx exits.
Otherwise the reason for termination will be reported and the
user offered the option of entering the debugger or letting the
program fault. Dbx will read from “/dev/tty” when –r is speci-
fied	and	 standard	 input	 is	not	 a	 terminal.

–i Force Dbx to act as though standard input is a terminal.

–I dir Add dir to the list of directories that are searched when looking for a
source	file.	Normally	dbx	looks	for	source	files	in	the	current	direc-
tory and in the directory where objfile is located. The directory
search path can also be set with the use command.

Unless –r	 is	 specified,	dbx just prompts and waits for a command.

Version 2.1 - 2 - February 1985

DBX(1) Silicon Graphics DBX(1)

Execution and Tracing Commands

run [args] [< filename] [> filename]
rerun [args] [< filename] [> filename]

Start executing objfile, passing args	as	command	line	arguments;	< or
> can be used to redirect input or output in the usual manner.
When rerun is used without any arguments the previous argument
list	is	passed	to	the	program;	otherwise	it	is	identical	to	run. It objfile
has been written since the last time the symbolic information was
read in, dbx will read in the new information.

trace [in procedure/function] [if condition]
trace source-line-number [if condition]
trace procedure/function [in procedure/function] [if condition]
trace expression at source-line-number [if condition]
trace variable [in procedure/function] [if condition]

Have tracing information printed when the program is executed. A
number is associated with the command that is used to turn the trac-
ing off (see the delete command).

The	first	 argument	describes	what	 is	 to	be	 traced.	 If	 it	 is	 a	 source-
line-number, then the line is printed immediately prior to being exe-
cuted.	Source	line	numbers	in	a	file	other	than	the	current	one	must	
be	 preceded	 by	 the	 name	 of	 the	 file	 in	 quotes	 and	 a	 colon,	 e.g.	
"mumble.p":17.

If the argument is a procedure or function name then every time it is
called, information is printed telling what routine called it, from
what source line it was called, and what parameters were passed to
it. In addition, its return is noted, and if it’s a function then the
value it is returning is also printed.

If the argument is an expression with an at clause then the value of
the	 expression	 is	 printed	 whenever	 the	 identified	 source	 line	 is	
reached.

If the argument is a variable then the name and value of the variable
is printed whenever it changes. Execution is substantially slower
during this form of tracing.

If	no	argument	 is	specified	then	all	source	 lines	are	printed	before	
they are executed. Execution is substantially slower during this
form of tracing.

The clause “in procedure/function” restricts tracing information to be

Version 2.1 - 3 - February 1985

DBX(1) Silicon Graphics DBX(1)

 printed only while executing inside the given procedure or function.

 Condition is a boolean expression and is evaluated prior to printing
the	 tracing	 information;	 if	 it	 is	 false	 then	 the	 information	 is	 not	
printed.

stop if condition
stop at source-line-number [if condition]
stop in procedure/function [if condition]
stop variable [if condition]
 Stop execution when the given line is reached, procedure or func-

tion called, variable changed, or condition true.
status [> filename]
 Print out the currently active trace and stop commands.
delete command-number ...
 The traces or stops corresponding to the given numbers are

removed. The numbers associated with traces and stops are printed
by the status command.

catch number
ignore number
 Start or stop trapping signal number before it is sent to the program.

This is useful when a program being debugged handles signals such
as interrupts. Initially all signals are trapped except SIGCONT,
SIGCHILD, SIGALRM and SIGKILL.

cont Continue execution from where it stopped. Execution cannot be
continued	if	the	process	has	“finished”,	that	is,	called	the	standard	
procedure “exit”. Dbx does not allow the process to exit, thereby
letting the user to examine the program state.

step Execute one source line.
next Execute up to the next source line. The difference between this and

step is that if the line contains a call to a procedure or function the
step command will stop at the beginning of that block, while the
next command will not.

return [procedure]
 Continue until a return to procedure is executed, or until the current

procedure	 returns	 if	none	 is	 specified.

Version 2.1 - 4 - February 1985

DBX(1) Silicon Graphics DBX(1)

Displaying and Naming Data

print expression [, expression ...]
 Print out the values of the expressions. Array expressions are

always subscripted by brackets (“[]”). Variables having the same
identifier	 as	one	 in	 the	 current	block	may	be	 referenced	as	 “block-
name . variable”.	The	field	reference	operator	(“.”)	can	be	used	with	
pointers as well as records, making the C operator “–>” unneces-
sary (although it is supported). The construct expression \ typename
can be used to print the expression out in the format of the type
named typename.

whatis name
	 Print	 the	 declaration	 of	 the	 given	 name,	 which	may	 be	 qualified	

with block names as above.
which identifier
	 Print	 the	 full	 qualification	 of	 the	 given	 identifier,	 i.e.	 the	 outer	

blocks	 that	 the	 identifier	 is	 associated	with.
whereis identifier
	 Print	the	full	qualification	of	all	the	symbols	whose	name	matches	

the	given	identifier.	The	order	in	which	the	symbols	are	printed	is	
not meaningful.

assign variable — expression
set variable = expression
 Assign the value of the expression to the variable.
call procedure(parameters)
 Execute the object code associated with the named procedure or

function. Currently, calls to a procedure with a variable number of
arguments are not possible. Also, string parameters are not passed
properly for C.

where Print out a list of the active procedures and function.
dump [> filename]
 Print the names and values of all active variables.
up [count]
down [count]
 Move the current function, which is used for resolving names, up or

down the stack count levels. The default count is 1.

Version 2.1 - 5 - February 1985

DBX(1) Silicon Graphics DBX(1)

Accessing Source Files

edit [filename]
edit procedure/function-name
 Invoke an editor on filename or the current source tile it none is

specified.	 If	 a	procedure or function	 name	 is	 specified,	 the	 editor	 is	
invoked	 on	 the	 file	 that	 contains	 it.	 Which	 editor	 is	 invoked	 by	
default depends on the installation. The default can be overridden
by setting the environment variable EDITOR to the name of the
desired editor.

file [filename]
	 Change	the	current	source	file	name	to	filename.	If	none	is	specified	

then	 the	 current	 source	file	name	 is	printed.
func [procedure/function]
	 Change	 the	 current	 function.	 If	 none	 is	 specified	 then	 print	 the	

current function. Changing the current function implicitly changes
the	current	source	file	to	the	one	that	contains	the	function;	 it	also	
changes the current scope used for name resolution.

list [source-line-number [, source-line-number]]
list procedure/function
	 List	the	lines	in	the	current	source	file	from	the	first	line	number	to	

the	second	inclusive.	 If	no	lines	are	specified,	 the	next	10	 lines	are	
listed. If the name of a procedure or function is given lines n–k to
n+k are listed where n	 is	 the	 first	 statement	 in	 the	 procedure	 or	
function and k is small.

use directory-list
 Set the list of directories to be searched when looking for source

files.

Machine Level Commands

tracei [address] [if cond]
tracei [variable] [at address] [if cond]
stopi [address] [if cond]
stopi [at] [address] [if cond]
 Turn on tracing or set a stop using a machine instruction address.
stepi
nexti Single step as in step or next, but do a single instruction rather

than source line.
address ,address/ [mode]

Version 2.1 - 6 - February 1985

DBX(1) Silicon Graphics DBX(1)

[address] / [count] [mode]
	 Print	the	contents	of	memory	starting	at	the	first	address and continu-

ing up to the second address or until the items are printed. If no
address	 is	 specified,	 the	 address	 following	 the	 one	 printed	 most	
recently is used. The mode	specifies	how	memory	is	to	be	printed;	if	
it	is	omitted	the	previous	mode	specified	is	used.	The	initial	mode	
is “X”. The following modes are supported:

i print the machine instruction
d print a short word in decimal
D print a long word in decimal
o print a short word in octal
O print a long word in octal
x print a short word in hexadecimal
X print a long word in hexadecimal
b print a byte in octal
c print a byte as a character
s print a string of characters terminated by a null byte
f print a single precision real number
g print a double precision real number

Symbolic	 addresses	 are	 specified	 by	 preceding	 the	 name	 with	 an	 “&”.	
Registers are denoted by “$rN” where N is the number of the register.
Addresses may be expressions made up of other addresses and the opera-
tors “+”, “–”, and indirection (unary “*”).

Miscellaneous Commands

sh command-line
 Pass the command line to the shell for execution. The SHELL

environment variable determines which shell is used.
alias new-command-name old-command-name
 Respond to new-command-name as though it were old-command-name.
help Print out a synopsis of dbx commands.
gripe Invoke a mail program to send a message to the person in charge of

dbx.
source filename
 Read dbx commands from the given filename.
quit Exit dbx.

FILES
a.out	 object	file

Version 2.1 - 7 - February 1985

DBX(1) Silicon Graphics DBX(1)

.dbxinit initial commands

SEE ALSO
cc(1), f77(1)

BUGS
The version of dbx contained in release 2.1 is preliminary. It is a complex
tool which has recently been ported to the IRIS workstation, and which
will take some time to become stable. The major debugger commands work
well	on	most	programs.	However,	there	are	many	minor	difficulties	which	
remain	 to	 be	 solved	 in	 this	 release.	 It	 is	 very	 important	 that	 difficulties	
which appear are documented with test cases and reported to Silicon Graph-
ics to be addressed.
There	are	two	major	classes	of	bugs	outstanding	in	dbx.	The	first	class	are	
bugs which are caused by limitations in the environment and which will
probably	 not	 be	 fixed.	 The	 second	 are	 current	 bugs	 which	 remain	 to	 be	
fixed.
Inherent Bugs
dbx may not be able to trace back through the stack if a procedure has been
executed which does not do a link (most assembler “routines, including those
in the C library). It may, of course, not be able to display the parameters to
a called procedure which has not been compiled with debugging informa-
tion.
Non-local gotos can cause some trace/stops to be missed. Most of the com-
mand names are too long. The alias facility helps, but is really quite weak.
A csh-like history capability would improve the situation. But then, who
wants to duplicate the C-shell in a debugger?
Dbx suffers from the same “multiple include” malady that sdb does. If you
have	a	program	consisting	of	a	number	of	object	files	and	each	is	built	from	
source	 files	 that	 include	 header	 files,	 the	 symbolic	 information	 for	 the	
header	files	is	replicated	in	each	object	file.	Since	about	one	debugger	start-
up is done for each link, having the linker (Id) re-organize the symbol infor-
mation won’t save much time, though it would reduce some of the disk
space used. The problem is an artifact of the unrestricted semantics of
#include’s	in	C;	for	example	an	include	file	can	contain	static	declarations	
that	 are	 separate	 entities	 for	 each	file	 in	which	 they	are	 included.
Outstanding Bugs
dbx in some cases touches illegal pages, causing a segmentation violation.
Certain circumstances cause self-diagnosed internal inconsistencies. These
result in an ‘internal error’ message from dbx followed by an abort. Test
cases which consistently cause these errors would be greatly appreciated.
dbx sets an incorrect breakpoint in certain cases when single stepping at the
source level. This causes control of the program to be lost. In particular,

Version 2.1 - 8 - February 1985

DBX(1) Silicon Graphics DBX(1)

stepping through a case statement or the entry or exit of a loop seems to
cause confusion.
dbx refuses to display ranges of either address or data registers, or to allow
setting registers.
It	 is	 often	very	difficult	 to	 interrupt	dbx when tracing. Dbx	 seems	 to	field	
the SIGKILLs but not to respond to them. A stream of kill signals (holding
down ^C) will force dbx to exit.
Tracing of items other than line numbers and global variables doesn’t work
correctly. Additionally, dbx seems to ignore breakpoints when it is tracing.
Dbx does not always set the breakpoint correctly when tracing the statement
in a single-statement loop. If the single statement is surrounded by braces,
tracing of the statement appears to work.
Besides	the	problems	with	not	doing	a	link,	floating	point	routines	in	the	C	
library sometimes pass their arguments in registers. In this case, dbx will
not see the arguments.
Other bugs in the system should be reported. In all cases, a bug report for
dbx should include the smallest possible test case, the corresponding source,
and an exact sequence of events which causes the failure.

Version 2.1 - 1 - February 1985

DOG(1D) Silicon Graphics DOG(1D)

NAME
dog	–	 cooperative	or	 competitive	flight	 simulator	using	 the	ethernet

SYNOPSIS
/usr/demos/dog

DESCRIPTION
The flight demo is extended for multiple IRIS systems. Each IRIS determines
the position of its aircraft several time a second, broadcasts the plane’s loca-
tion and orientation to the other IRIS systems running dog , and listens to
the	 other	planes’	 locations.	All	 known	planes	 in	 the	 current	field	of	 view	
are displayed on all systems.
Pilots may cooperate by attempting formation aerobatics or compete by try-
ing	 to	 shoot	 each	 other	 down.	 The	fighter	 are	 armed	with	missiles,	 rock-
ets, and cannon. The coordinates of projectiles are included in the ethernet
packages, hits are detected, and scoring is maintained.

WEAPONS
Fighters are armed with rockets, sidewinders, and cannon.
Rockets have about ten seconds of power and follow ballistic paths after the
power is exhausted. They explode when they strike the ground, come
within range of an aircraft (including the one they came from), or are des-
troyed by their owner.
Sidewinders are like rockets, but will steer themselves towards the nearest
aircraft (except their owner’s). Sidewinders can turn around and destroy
aircraft behind you. The Cessna 150 does not generate enough heat to at-
tract sidewinders. Sidewinders will not track aircraft on the ground. A
good pilot can usually outmaneuver a sidewinder.
Cannon have limited range -- each shell exists for only one second.
The	number	of	rockets	and	sidewinders	available	on	each	type	of	fighter	are	
indicated on the help display. Landings replenish armament as well as fuel.
The number of missiles replenished depends on the quality of the landing.
Ammunition for the cannon is inexhaustible.
Each aircraft can have only one projectile in the air at a time. He can des-
troy	projectiles	that	have	missed	their	targets	to	allow	new	ones	to	be	fired.
q	 fires	 a	 rocket,	 w	 fires	 a	 sidewinder,	 e	 fires	 the	 cannon,	 r destroys the
current projectile. Any aircraft in the range of the explosion will be des-
troyed.
In flight , or in dog	with	 no	 competition,	 strafing	 the	 airport	 can	 be	 good	
practice for the real thing.

SCORING
dog keeps track of kills and crashes. A pilot scores a kill when a projectile
fired	by	his	plane	destroys	another	aircraft.	A	pilot	 scores	a	 ‘killed’	when

Version 2.1 - 2 - February 1985

DOG(1D) Silicon Graphics DOG(1D)

his aircraft is destroyed by a projectile or crashes.
Each pilot’s score is displayed on his instrument panel. The scores of all the
current players are shown to each new player when he joins the game and
when he reincarnates himself after destruction.
When a player joins the game, an announcement is broadcast to all players.
Messages are sent whenever a player quit or is destroyed, as well as when
sent by the radar program.

AUTHOR
Gary Tarolli

BUGS
See the bugs for flight.
Various kinds of cheating are possible. (For example, temporarily selecting
the night display to better see a distant opponent’s exhaust.) Some scrupu-
lous pilots avoid operations not possible in real aircraft. Others use every
trick possible.
The Cessna 150 and B-747 have 20mm cannon. This is inaccurate but amus-
ing in the C-150 (the 747 is much too logy). Try taking off in the 150 and
flying	 around	 the	 ramp,	 picking	 off	 opponents	 as	 they	 appear.	 Since	 the	
Cessna is invisible to sidewinders, it has a chance to survive. If you make a
mistake and take off in the 747, you are dogmeat.
The	 cannon	 ammunition	 should	 be	 finite.	 The	 cannon,	 in	 fact,	 should	
overheat and jam if used too often.

Version 2.1 - 1 - February 1985

FLIGHT(1D) Silicon Graphics FLIGHT(1D)

NAME
flight	–	 simulate	 the	flight	of	 any	of	 several	 aircraft

SYNOPSIS
/usr/people/demos/flight

DESCRIPTION
One	large	viewport	shows	an	instance	of	a	world;	several	smaller	ones	simu-
late instruments. The world is viewed from the cockpit of an aircraft or
from a control tower. The mouse and keyboard control the aircraft and its
environment.

Starting Up
Flight provides two pages of help information. To freeze the action at any
time	 and	 display	 the	 first	 page,	 h. Type any key to view the next page.
Type any key to continue.
The	first	 help	 page	 briefly	describes	 the	 program.	Read	 it,	 and	press	 any	
key	 to	 continue.	The	 second	pages	offers	descriptions	of	five	aircraft:	 one	
two-place trainer (Cessna 150), one heavy transport (Boeing 747), and three
fighters.	Type	1	 to	 select	 the	Cessna	150.
The view you see is from the cockpit of the Cessna. Type d to see the Cess-
na from the control tower. Type x a few times for a closer view. Type d to
return to the cockpit and strike s three or four times to advance the throttle.
The aircraft will start to taxi towards the runway. Type twice to raise the
flaps	—	Cessnas	normally	 take	off	 that	way.	When	the	plane	 is	almost	on	
the	 runway,	 tap	 the	 right	 mouse	 button	 five	 or	 six	 times	 to	 apply	 right	
rudder. The plane will start to turn right. The left mouse button move the
rudder	 one	 increment	 to	 the	 left;	 the	 center	 one	 sets	 the	 rudder	 to	 zero.	
Move the mouse till the cursor is centered on the bottom edge of the screen
and tap s until the thrust indicator shows all blue. When the airspeed indi-
cator passes 60 knots, move the mouse smoothly toward you. The cursor
should be in the upper center of the attitude indicator. When the rate-of-
climb	 indicator	 shows	blue,	you	are	flying!	Congratulations!
Now turn around and land.

Flight Controls
Flight is controlled by the mouse, the mouse buttons, and the keyboard.
The	mouse	holds	 the	primary	flight	 controls.
Rightmouse and leftmouse move the rudder one increment to the right and left
respectively. Middlemouse centers it. The rudder position is shown by a
small red triangle at the lower edge of the attitude indicator. The rudder is
used primarily to maneuver the aircraft on the ground. Airborne turns are
made, as in real aircraft, by coordinated application of aileron and elevator.
The mouse X and Y valuators control the ailerons and elevator, emulating a
control	stick.	Left-right	motion	controls	roll;	forward-back	motion	controls

Version 2.1 - 2 - February 1985

FLIGHT(1D) Silicon Graphics FLIGHT(1D)

pitch. The stick position is indicated by a square white cursor. Both con-
trols are at their neutral position when the cursor is centered at the bottom
of	 the	windshield.	Stick	position	 tor	 level	flight	 is	 slightly	below	center.
The s	key	 increases	the	throttle	setting;	 the	a key decreases it. The left bar
indicator shows the throttle setting as a percentage of full power. Reverse
thrust is available and shown in red. Thrust goes to zero when the plane
climbs	through	50,000	feet	and	the	engine	flames	out.	It	can	be	restored	by	
descending and applying throttle. Thrust goes to zero when fuel goes to
zero. It can be restored only by making a safe landing (good luck) to pick
up fresh fuel.
Secondary	flight	 controls	 include	 the	 landing	gear,	 flaps,	 and	 spoilers.	 To	
raise or lower the landing gear, type l.	 To	 increase	 or	 decrease	 the	 flaps,	
type f or F. To increase or decrease the spoilers, type c or C. Flap and
spoiler ranges are determined by the aircraft. The Cessna has no spoilers
and its gear is down and welded.
The landing gear has two functions: to protect the fuselage from the ground
and to add drag. You may lower the gear to slow the plane down and
make handling easier.
Flaps and gear are structurally unsound at high speeds. They fall off if you
exceed 400 knots while they are deployed or if either is deployed at speeds
over	 400	 knots.	Missing	flaps	make	 good	 landings	 difficult.	Missing	 gear	
makes a good landing impossible.
Flaps increase lift, increase drag, and decrease stall speed. Takeoffs are nor-
mally	made	with	partial	flaps;	 landings	with	 full	flaps.
Spoilers decrease lift and increase drag dramatically. They are most useful
in	dissipating	excess	altitude	without	increasing	speed.	It	 is	difficult	to	re-
cover from a stall while spoilers are deployed.

Display Controls
Several controls allow the viewer to alter his view of the world.
The left-arrow and right-arrow keys rotate the pilot’s point of view 90 degrees
to the left or right respectively. The viewing angle (front, left, rear, or right)
is displayed on the windshield. The keys are useful for looking around, but
remember	to	set	the	view	back	to	the	front	for	any	but	the	simplest	flying.
The d key switches the viewpoint from the cockpit to the control tower or
back. The control tower always looks toward the plane, x decreases the
tower’s	 field	 of	 view,	 effectively	 magnifying	 the	 aircraft.	 z increases the
field	of	view.	If	there	is	doubt	as	to	whether	the	view	observed	is	from	the	
cockpit or the tower, observe the center of the window. A yellow tracking
cross marks the cockpit view.
n changes the time of day from daylight to night or back. There is an in-
teresting city NNW of the airport.

Version 2.1 - 3 - February 1985

FLIGHT(1D) Silicon Graphics FLIGHT(1D)

Instruments
This section lists the instruments on the panel from left to right.
The thrust indicator shows thrust as a percentage of full throttle. As with all
the bar-graph displays, a blue bar is positive and a red one negative. Re-
verse thrust is possible only on the ground.
The airspeed indicator is calibrated from 0-1000 knots. (100 knots is about 118
miles per hour.) Negative airspeeds can happen during such acrobatic
maneuvers as hammerhead stalls. Since wind is not simulated, airspeed ≡
groundspeed.
The vertical-speed indicator shows rate of climb in feet per minute. Note that
the	fighter	(in	normal	operation)	and	the	civil	planes	(usually	while	crash-
ing) can exceed the 10,000 fpm maximum absolute rate displayed. Use the
numeric display at the bottom of the band.
The G-meter indicates vertical acceleration. Each aircraft has maximum stress
limits. I they are exceeded, the attitude indicator shows the message "G-
LIMIT."
The attitude indicator or artificial horizon helps orient the plane when the real
horizon is not visible. The triangular indicator at the bottom edge shows
the rudder position.
The fuel gauge shows remaining fuel as a percentage of a full tank. To
reduce fuel consumption to zero (for tests only) type ~. This is considered
cheating	 in	normal	flight.

Landings, Crashes, and Restarts
A good landing is a landing on the runway, with gear down, a descent rate
of less than 600 fpm, and in line with the runway. Good landings are re-
warded with scores from 0 - 100 points. For every point scored, fuel on
board is increased by 1% of total capacity. (Total capacity is never exceed-
ed.)
Landings that are almost good (rate of descent, drift, and roll too high but
not	 disastrous	 count	 as	 crash	 landings.	 You	 can	 keep	 flying,	 but	 get	 no	
more fuel.
Landings with the gear up, off the runway, or with excessive descent rate,
drift, or roll count as "crashed into the swamps." All you can do is look at
the wreckage from the tower or type r to restart the game.
r will not work while your plane is intact. Your plane must be destroyed.
Your plane is destroyed if it crashes into the swamps, taxis too far off the
runway, raises the gear while on the ground, or is shot down. If you wish
to restart (to get a different kind of plane or refuel without landing), auger
in or type qr to shoot yourself down. The latter will fail with unarmed civili-
an planes.

Version 2.1 - 4 - February 1985

FLIGHT(1D) Silicon Graphics FLIGHT(1D)

AUTHOR
Gary Tarolli

BUGS
Flight	 and	 its	offspring	are	continually	being	 improved.	There	 is	a	 signifi-
cant creative spurt before each major trade show. Improvements may be
documented in the program’s help display before this page is affected.
The	Cessna	 is	much	 too	difficult	 to	bring	out	of	 a	 stall.

Version 2.1 - 1 - February 1985

FLOAD(1M) Silicon Graphics FLOAD(1M)

NAME
fload	–	 initialize	 the	Sky	floating	point	processor

SYNOPSIS
/etc/fload

DESCRIPTION
Fload is run when the IRIS workstation is booted. It probes for the
Sky-floating	point	processor.	 If	 the	processor	 is	 found,	 it	 is	 initialized	and	
its	microcode	 loaded	 from	 the	file	 /lib/skyffp.fas .
The program can be run by the superuser under normal operating condi-
tions. Since fload does not access the board through the normal kernel utili-
ties, any users of the board may be aborted when the program is run.

DIAGNOSTICS
If fload is run by a user who is not the superuser, the message

fload:	phys	 call	 failed
will be given.
If fload	 cannot	access	 its	microcode	file	 (/lib/skyffp.fas), it will complain.
If the Sky board is not visible in the system, i.e., either it has not been
installed or is installed incorrectly, the message

fload:	 skyffp	not	 installed
will be displayed.
Fload does some cursory testing of the board. If one of these tests fails, one
of the messages

fload:	 error	 initializing	 skyffp
fload:	board	 test	 failure
fload:	board	 function	 test	 failure

will be displayed. In any of these cases, the board should be replaced.

Version 2.1 - 1 - February 1985

FLOW(1D) Silicon Graphics FLOW(1D)

NAME
flow	–	display	of	 complex	 scientific	data	base

SYNOPSIS
/usr/people/demos/flow

DESCRIPTION
Flow displays about 20,000 data points and a few vectors. The data is a
three-dimensional display of the values of the Xavier-Stokes equations for
turbulent	fluid	flow	in	a	channel.	The	calculation	was	done	at	NASA-Ames	
on, of all things, the Illiac-IV.
Simple mouse motions control the display. Press LEFTMOUSE, move the
cursor, and release the button to redraw the image with new altitude and az-
imuth. Use MIDDLEMOUSE to control distance and twist. RIGHTMOUSE
starts a sequence of 100 short twists. Any keyboard key switches the
display from single-buffer mode (the initial state) to double-buffer mode or
back.

AUTHOR
Phil Gustafson.

HARDWARE CONFIGURATION
Eight bitplanes and 2.5 Megabytes of memory are required to run flow.

Version 2.1 - 1 - February 1985

IIB(1) Silicon Graphics IIB(1)

NAME
iib – initialize ib driver

SYNOPSIS
iib	 [-f	 ibtabfile]	 [-r]	 [-v]

DESCRIPTION
Iib initializes and starts the ib driver (see ib(8)). By default it uses informa-
tion	from	the	file	/etc/ibtab.	The	-f	flag	specifies	an	alternate	file	of	the	same	
format (see ibtab(5)).	The	-v	flag	causes	iib to print each entry as it reads the
file.
Normally iib	 has	 no	 effect	 if	 the	 ib	 driver	 is	 already	 started.	 The	 -r	 flag	
makes it re-initialize and re-start even if the driver was already started. The
-r	flag	 should	only	be	used	 if	 the	driver	gets	 jammed,	 and	only	when	no	
other programs are using the driver. Only the super-user may use the -r
flag.

EXAMPLE
iib

FILES
/etc/ibtab

SEE ALSO
cib(8), dib(8), ibtab(3), ibtab(5), tib(8).

Version 2.1 - 1 - February 1985

HEME(1D) Silicon Graphics HEME(1D)

NAME
heme – depthcued display of the Cytochrome P450 protein molecule

SYNOPSIS
/usr/people/demos/heme

DESCRIPTION
Dr. Tom Poulos and Prof. Joseph Kraut of the University of California at San
Diego have constructed a computer model of the Cytochrome P450 molecule
to aid in their research into the structure of this enzyme. Computer graphics
help in comparing electron density maps to the proposed protein structure
by moving the hypothetical structure into regions of high electron density.
Proximity of atoms provides information regarding chemical interaction.
Heme displays the Cytochrome protein with control of viewing transforma-
tions via pop-up menu selections. Also, display of various parts of the pro-
tein molecule can be toggled on and off.
Pop up the menu by holding down the CENTER mouse button. Menu selec-
tions are are toggled by placing the cursor atop the menu selection and
pressing the LEFT mouse button. The menu disappears when the CENTER
mouse button is released.

Left Function
Menu

5 Amino acids that interact with the heme group.
4 Backbone of P450, connecting alpha-carbons of amino acid

subunits.
3 Electron density contour around the iron atom.

2 Van der Waal surface of the heme group.
1 The heme group, the subunit which accepts and donates

electrons.

The depth cueing uses 36 intensities per color. The initial display is
designed to emphasize the central structure of the model. If the model is
translated far enough away to be completely visible, the depth cueing will
render it virtually invisible. To see the whole model, scale it down (SCAL -)
and translate it forward (TRAN +Z) until the perspective, Z-clipping, and
depth cueing give an attractive image.

FILES
./hemlib/heme control program
./hemlib/heme[15]	 data	files

Version 2.1 - 2 - February 1985

HEME(1D) Silicon Graphics HEME(1D)

HARDWARE CONFIGURATION
A	minimum	configuration	of	16	bitplanes,	1.5	Megabytes	of	memory,	and	
Z-clipping is required to run heme.

Version 2.1 - 1 - February 1985

IOSTAT(1) Silicon Graphics IOSTAT(1)

NAME
iostat – report I/O statistics

SYNOPSIS
iostat [interval [count]]

DESCRIPTION
Iostat iteratively reports the number of characters read and written to termi-
nals, and, for each disk, the number of seeks transfers per second, kilobytes
transferred per second, and the milliseconds per average seek. It also gives
the percentage of time the system has spent in user mode, in user mode
running low priority (niced) processes, in system mode, and idling.
To compute this information, for each disk, seeks and data transfer comple-
tions	 and	 number	 of	words	 transferred	 are	 counted;	 for	 terminals	 collec-
tively, the number of input and output characters are counted. Also, each
sixtieth of a second, the state of each disk is examined and a tally is made if
the disk is active. From these numbers and given the transfer rates of the
devices it is possible to determine average seek times for each device.
The optional interval argument causes iostat to report once each interval
seconds.	The	first	report	is	for	all	time	since	a	reboot	and	each	subsequent	
report is for the last interval only.
The optional count argument restricts the number of reports.

FILES
/dev/kmem
/vmunix

SEE ALSO
vmstat(1)

Version 2.1 - 1 - February 1985

JET(1D) Silicon Graphics JET(1D)

NAME
jet	 –	depthcued	wireframe	model	of	 the	 f18	 jet	fighter

SYNOPSIS
/usr/people/demos/jet

DESCRIPTION
A wireframe f18 model can be viewed under mouse control. The mouse but-
tons control rotation about the x, y & z axes and viewer distance. Unless
otherwise	noted,	only	the	x-movement	of	the	mouse	is	a	significant	valuator	
when holding down a mouse button.

Mouse buttons Function

left rotation about x-axis via mouse x-motion
middle rotation about y-axis via mouse x-motion
right rotation about z-axis via mouse x-motion
left & middle translate object via mouse x & y motion
left & right zoom back
middle & right zoom forward
all quit

Use the ENTER key to toggle into depth-cueing mode. The ARROW keys
modify the portion of the color map that is used for the shaderange, effec-
tively changing the intensity of the depthcue. Play with the arrow keys to
get a more satisfying display.

The PF1 key toggles the cursor on & off.

HARDWARE CONFIGURATION
A	minimum	configuration	of	8	bitplanes	and	1.5	Megabytes	of	memory	is	
required to run the jet demo.

Version 2.1 - 1 - February 1985

LD(1) Silicon Graphics LD(1)

NAME
ld – link editor

SYNOPSIS
ld	 [option]	 ...	file	 ...

DESCRIPTION
Ld combines several object programs into one, resolves external references,
and searches libraries. In the simplest case several object files are given, and
ld combines them, producing an object module which can be either executed
or become the input for a further ld run. (In the latter case, the –r option
must be given to preserve the relocation bits.) The output of ld is left on
a.out.	 This	 file	 is	 made	 executable	 only	 if	 no	 errors	 occurred	 during	 the	
load.
The	 argument	 routines	 are	 concatenated	 in	 the	order	 specified.	The	 entry	
point	of	the	output	is	the	beginning	of	the	first	routine	(unless	the	–e option
is	 specified).
If any argument is a library, it is searched exactly once at the point it is
encountered	 in	 the	 argument	 list.	 Only	 those	 routines	 defining	 an	
unresolved external reference are loaded. If a routine from a library refer-
ences another routine in the library, and the library has not been processed
by ranlib(1), the referenced routine must appear after the referencing routine
in the library. Thus the order of programs within libraries may be impor-
tant.	 The	 first	member	 of	 a	 library	 should	 be	 a	 file	 named	 ‘_	_.SYMDEF’,	
which is understood to be a dictionary for the library as produced by ran-
lib(1);	 the	 dictionary	 is	 searched	 iteratively	 to	 satisfy	 as	 many	 references	
as possible.
The symbols ‘_etext’, ‘_edata’ and ‘_end’ (‘etext’, ‘edata’ and ‘end’ in C) are
reserved,	and	if	referred	to,	are	set	to	the	first	location	above	the	program,	
the	first	location	above	initialized	data,	and	the	first	location	above	all	data	
respectively.	 It	 is	 erroneous	 to	define	 these	 symbols.
Ld understands several options. Except for –l, they should appear before
the	file	names.
–A	 This	option	specifies	incremental	loading,	i.e.	linking	is	to	be	done	

in a manner so that the resulting object may be read into an already
executing	program.	The	next	argument	is	the	name	of	a	file	whose	
symbol	table	will	be	taken	as	a	basis	on	which	to	define	additional	
symbols. Only newly linked material will be entered into the text
and data portions of a.out,	but	the	new	symbol	table	will	reflect	
every	symbol	defined	before	and	after	the	incremental	load.	This	
argument	must	appear	before	any	other	object	file	in	the	argument	
list. The –T option may be used as well, and will be taken to mean
that the newly linked segment will commence at the corresponding
address (which must be a multiple of 1024). The default value is

Version 2.1 - 2 - February 1985

LD(1) Silicon Graphics LD(1)

 the old value of _end.
–D Take the next argument as a hexadecimal number and pad the data

segment with zero bytes to the indicated length.
–d	 Force	definition	of	common	storage	even	if	the	–r	flag	is	present.
–e The following argument is taken to be the name of the entry point

of	the	loaded	program;	location	0x1000	is	the	default.	As	UNIX	will	
only currently recognize programs which begin execution at 0x1000
or 0x2000, the use of –e is limited to the standalone environment.

–lx This option is an abbreviation for the library name ‘/lib/libx.a’,
where x is a string. If that does not exist, ld tries ‘/usr/lib/libx.a’
and ‘/usr/local/lib/libx.a’. A library is searched when its name is
encountered, so the placement of a –l	 is	 significant.

–M	 produce	a	primitive	load	map,	listing	the	names	of	the	files	which	
will be loaded.

–N Do not make the text portion read only or sharable. (Use "magic
number" 0407.)

–n	 Arrange	 (by	giving	 the	output	file	 a	 0410	 "magic	number")	 that	
when	the	output	file	is	executed,	the	text	portion	will	be	read–only	
and	shared	among	all	users	executing	the	file.	This	involves	mov-
ing	the	data	areas	up	to	the	first	possible	1024	byte	boundary	fol-
lowing the end of the text.

–o The name argument after –o is used as the name of the ld output
file,	 instead	of	a.out.

–r	 Generate	relocation	bits	in	the	output	file	so	that	it	can	be	the	sub-
ject of another ld	run.	This	flag	also	prevents	final	definitions	from	
being	given	to	common	symbols,	and	suppresses	the	‘undefined	
symbol’ diagnostics.

–S ‘Strip’ the output by removing all symbols except locals and globals.
–s ‘Strip’ the output, that is, remove the symbol table and relocation

bits to save space (but impair the usefulness of the debuggers).
This information can also be removed by strip(1).

–T The next argument is a hexadecimal number which sets the text
segment origin. The default origin is 0x1000. (See –e notes.)

–t	 ("trace")	Print	 the	name	of	 each	file	as	 it	 is	processed.
–u	 Take	the	following	argument	as	a	symbol	and	enter	it	as	undefined	

in the symbol table. This is useful for loading wholly from a
library, since initially the symbol table is empty and an unresolved
reference	 is	needed	 to	 force	 the	 loading	of	 the	first	 routine.

Version 2.1 - 3 - February 1985

LD(1) Silicon Graphics LD(1)

–X Save local symbols except tor those whose names begin with ‘L’.
This option is used by cc(1) to discard internally-generated labels
while retaining symbols local to routines. NOTE: see the BUGS
section.

–x Do not preserve local (non–.globl) symbols in the output symbol
table;	only	enter	external	symbols.	This	option	saves	some	space	in	
the	output	file.

–ysym	 Indicate	each	file	in	which	sym appears, its type and whether the
file	defines	or	references	 it.	Many	such	options	may	be	given	to	
trace many symbols. (It is usually necessary to begin sym with an
‘_’, as external C, FORTRAN and Pascal variables begin with under-
scores.)

–z Arrange for the process to be loaded on demand from the resulting
executable	 file	 (413	 format)	 rather	 than	 preloaded.	 This	 is	 the	
default.	Results	in	a	1024	byte	header	on	the	output	file	followed	
by a text and data segment each of which have size a multiple of
1024	bytes	(being	padded	out	with	nulls	in	the	file	if	necessary).	
With	this	format	the	first	few	BSS	segment	symbols	may	actually	
appear (from the output of size(1))	to	live	in	the	data	segment;	this	
to avoid wasting the space resulting from data segment size
roundup.

FILES
/lib/lib*.a libraries
/usr/lib/lib*.a more libraries
/usr/local/lib/lib*.a still more libraries
a.out	 output	file

SEE ALSO
as(1), ar(1), cc(1), ranlib(1)

BUGS
There is no way to force data to be page aligned.
When the –r switch is used to preserve relocation bits, ld gets the relocation
commands table out of sync with the symbol table if –x is given without –X.
Thus one should not use –X with –r.

Version 2.1 - 1 - February 1985

LIBRARY(1) Silicon Graphics LIBRARY(1)

NAME
library – create a library of FORTRAN and Pascal objects

SYNOPSIS
library –l	 ofile	 ifile	 [ifile	]
library	 listfname	ofile	 ifile	 [ifile	]

DESCRIPTION
Library can be used to generate a library of FORTRAN and Pascal object (.j)
files.	The	resultant	library,	which	should	be	suffixed	with	.j,	can	be	used	as	
as regular object to the f77(1) or pc(1) program. The prelinker program code,
will recognize the library format and only extract needed objects.
Library	accepts	as	its	first	argument	either	a	filename,	on	which	a	listing	of	
the created library is placed, or the switch -l , which is used to indicate that
no library listing is desired. Library can also be run interactively, in which
case	 it	prompts	 tor	 the	file	names.
If	 the	 resultant	 library	file	 is	not	 suffixed	with	 .j, f77(1) and pc(1) will not
recognize	 it	 as	 a	FORTRAN/Pascal	file.

Version 2.1 - 1 - February 1985

MKBOOT(1) Silicon Graphics MKBOOT(1)

NAME
mkboot – make a “bootable” tape for system restoration

SYNOPSIS
/etc/mkboot [–s standalonedir] [–r rootdev] [filesys] ...

DESCRIPTION
Mkboot creates a tape with the contents of the disk at the time it is invoked.
It is suitable for use in restoring a system to a functional state, regardless of
the contents of the disk. Such a tape can be used to recover from a crash, or
to bring up a new disk.
The	tape	contains	two	or	more	files:	 the	first	 is	a	cpio-format	archive	con-
taining	necessary	standalone	programs;	 the	second	is	a	“dd”	image	of	 the	
root	file	system;	 the	 third	and	succeeding	files	are	cpio-format	archives	of	
user	file	systems.	The	standalone	programs	are	normally	taken	from	/stand;	
the –s	 option	may	 be	 used	 to	 specify	 an	 alternate	 directory.	 The	 root	 file	
system is normally md0a or ip0a,	depending	on	the	system	model;	 the	–r
option may be used to specify an alternate (block) device. The remaining
options	are	the	path	names	of	directories	to	be	included	on	the	tape;	no	user	
file	 systems	are	 included	by	default.
To use the tape to restore a system, the standalone program “fex” (or
“ipfex”)	 is	 booted	 from	 the	 first	 file	 on	 the	 tape,	 then	 used	 to	 copy	 the	
second	file	(the	root	file	system)	onto	the	disk.	All	previous	contents	on	the	
root	file	system	of	the	disk	are	lost.	The	system	may	then	be	brought	up	in	
single-user mode. To restore user partitions, “newfs” may be used to create
the	user	file	system	if	necessary,	“smt”	 is	used	to	partition	the	 tape	to	 the	
third	file,	 and	 then	“cpio”	may	be	used	 to	 read	 in	 the	user	files.

EXAMPLE
mkboot /usr

This command creates a standard “mkboot” tape.

SEE ALSO
cpio(1), smt(1).
Fex Formatter and Exerciser
Ipfex Interphase Formatter and Exerciser

Version 2.1 - 1 - February 1985

NEWFS(1) Silicon Graphics NEWFS(1)

NAME
newfs	–	 create	a	new	file	 system

SYNOPSIS
newfs fs

DESCRIPTION
Newfs	 takes	a	file	 system	descriptor	and	generates	a	mkfs with the proper
arguments. E.g.:

newfs md1c
newfs ip0d

Prior to performing the mkfs, the user is prompted with the mkfs line to
be executed, and a ‘t’ is required to perform the mkfs.

FILES
/dev/rfs

SEE ALSO
mkfs(1), sgilabel(1)

Version 2.1 - 1 - February 1985

PATRAN(1D) Silicon Graphics PATRAN(1D)

NAME
patran – PATRAN simulation of the space shuttle

SYNOPSIS
/usr/people/demos/patran

DESCRIPTION
A PATRAN shuttle model may be viewed under mouse control. The mouse
buttons control rotation about the x, y and z axes, viewer distance, and z-
clipping. Unless otherwise noted, only the x-movement of the mouse is a
significant	valuator	when	holding	down	a	mouse	button.	Any	key	toggles	
opening & closing motion of the bay doors on the shuttle.

Commands
Mouse button Function
Left
Middle
Right
Left & middle
Left & right
Middle & right
All

Rotation about x-axis with mouse x-motion
Rotation about y-axis with mouse x-motion
Rotation about z-axis with mouse x-motion
Translate object with mouse x & y motion
Zoom back
Zoom forward
Move near z-clipping plane with mouse x-motion

HARDWARE REQUIREMENTS
A	minimum	configuration	of	8	bitplanes	and	1.5	Megabytes	of	memory	is	
required to run the shuttle.

Version 2.1 - 1 - February 1985

PS(1) Silicon Graphics PS(1)

NAME
ps – process status

SYNOPSIS
ps [acegklstuvwx#]

DESCRIPTION
Ps prints information about processes. Normally, only your processes are
candidates to be printed by ps;	specifying	a causes other users processes to
be	candidates	to	be	printed;	specifying	x includes processes without control
terminals in the candidate pool.
All output formats include, for each process, the process id PID, control ter-
minal of the process TT, cpu time used by the process TIME (this includes
both user and system time), the state STAT of the process, and an indication
of the COMMAND which is running. The state is given by a sequence of
four	 letters,	 e.g.	 “RWNA”.	 The	first	 letter	 indicates	 the	 runnability	 of	 the	
process: R for runnable processes, T for stopped processes, P for processes
in page wait, D for those in disk (or other short term) waits, S for those
sleeping for less than about 20 seconds, and I for idle (sleeping longer than
about 20 seconds) processes. The second letter indicates whether a process
is swapped out, showing W if it is, or a blank if it is loaded (in-core). The
third letter indicates whether a process is running with altered CPU schedul-
ing	priority	(nice);	 if	 the	process	priority	is	reduced,	an	N	is	shown,	if	 the	
process	priority	has	 been	 artificially	 raised	 then	 a	 ‘<’	 is	 shown;	processes	
running without special treatment have just a blank.
The options are:
a asks for information about all processes with terminals (ordinarily only

one’s own processes are displayed).
c prints the command name, as stored internally in the system for pur-

poses of accounting, rather than the command arguments, which are
kept in the process’ address space. This is more reliable, if less infor-
mative, since the process is free to destroy the latter information.

e asks for the environment to be printed as well as the arguments to the
command.

g asks for all processes. Without this option, ps only prints “interesting’’
processes. Processes are deemed to be uninteresting if they are pro-
cess group leaders. This normally eliminates top-level command inter-
preters and processes waiting for users to login on free terminals.

k	 causes	the	file	/vmcore is used in place of /dev/kmem and /dev/mem. This
is used for postmortem system debugging.

l	 asks	 for	 a	 long	 listing,	 with	 fields	 PPID,	 CP,	 PRI,	 XI,	ADDR,	 SIZE,	
RSS and WCHAN as described below.

Version 2.1 - 2 - February 1985

PS(1) Silicon Graphics PS(1)

s adds the size SSIZ of the kernel stack of each process (for use by sys-
tem maintainers) to the basic output format.

tx restricts output to processes whose controlling tty is x (which should
be	 specified	as	printed	by	ps, e.g. t3 for tty3, tco for console, td0 for
ttyd0, t? for processes with no tty, t for processes at the current tty,
etc). This option must be the last one given.

u	 produces	 a	user	 oriented	output.	 This	 includes	fields	USER,	%CPU,	
NICE, SIZE, and RSS as described below.

v causes a version of the output which contains virtual memory statis-
tics.	 This	 includes	 fields	 RE,	 SL,	 PAGEIN,	 SIZE,	 RSS,	 TSIZ,	 TRS,	
%CPU and %MEM, described below.

w	 uses	a	wide	output	format	(132	columns	rather	than	80);	 if	repeated,	
e.g. ww, use arbitrarily wide output. This information is used to
decide how much of long commands to print.

x even supplies information about processes with no terminal.
#	 specifies	 a	process	number,	 (indicated	here	 by	#),	 in	which	 case	 the	

output is restricted to that process. This option must be last.
A	second	argument	is	taken	to	be	the	file	containing	the	system’s	namelist.	
Otherwise, /vmunix is used. A third argument tells ps where to look for core
if the k option is given, instead of /vmcore. If a fourth argument is given, it
is	 taken	 to	 be	 the	 name	 of	 a	 swap	 file	 to	 use	 instead	 of	 the	 default	
/dev/drum.
Fields which are not common to all output formats:
USER name of the owner of the process
%CPU	 cpu	utilization	of	the	process;	this	is	a	decaying	average	over	up	

to a minute of previous (real) time. Since the time base over
which this is computed varies (since processes may be very
young)	 it	 is	 possible	 for	 the	 sum	 of	 all	 %CPU	 fields	 to	 exceed	
100%.

NICE (or NI) process scheduling increment
SIZE virtual size of the process (in 1024 byte units)
RSS real memory (resident set) size of the process (in 1024 byte units)
TSIZ size of text (shared program) image
TRS size of resident (real memory) set of text
%MEM percentage of real memory used by this process.
RE residency time of the process (seconds in core)
SL sleep time of the process (seconds blocked)
PAGEIN number of disk i/o’s resulting from references by the process to

pages not loaded in core.
UID numerical user-id of process owner

Version 2.1 - 3 - February 1985

PS(1) Silicon Graphics PS(1)

PPID numerical id of parent of process
CP short-term cpu utilization factor (used in scheduling)
PRI process priority (non-positive when in non-interruptible wait)
ADDR swap address of the process
WCHAN event on which process is waiting (an address in the system).

F	 flags	associated	with	process	as	 in	<sys/proc.h >:
SLOAD 000001 in core
SSYS 000002 swapper or pager process
SLOCK 000004 process being swapped out
SSWAP	 000008	 save	area	flag
STRC 000010 process is being traced
SWTED	 000020	 another	 tracing	flag
SULOCK 000040 user settable lock in core
SPAGE 000080 process in page wait state
SKEEP	 000100	 another	flag	 to	prevent	 swap	out
SWEXIT 000200 working on exiting
SPHYSIO 000400 doing physical i/o (bio.c)
STIMO 000800 timing out during sleep
SGR 001000 process using graphics
SPTECHG 002000 ptes for process have changed
SPHYS 004000 process has phys region

A process that has exited and has a parent, but has not yet been waited for
by	the	parent	 is	marked	<	defunct	>;	a	process	which	is	blocked	trying	to	
exit	is	marked	<	exiting	>;	Ps	makes	an	educated	guess	as	to	the	file	name	
and arguments given when the process was created by examining memory
or the swap area. The method is inherently somewhat unreliable and in any
event a process is entitled to destroy this information, so the names cannot
be counted on too much.

FILES
/vmunix system namelist
/dev/kmem kernel memory
/dev/drum swap device
/vmcore	 core	file
/dev	 searched	 to	find	swap	device	and	 tty	names

SEE ALSO
kill(1), w(1)

BUGS
Things can change while ps	 is	 running;	 the	picture	 it	gives	 is	only	a	close	
approximation.

Version 2.1 - 1 - February 1985

RESHAPE(1) Silicon Graphics RESHAPE(1)

NAME
reshape – reshape the console textport

SYNOPSIS
reshape -s
reshape -40
reshape -24
reshape llx lly xlen ylen

DESCRIPTION
Reshape allows the textport to be reshaped. The textport is the window that
is used for non-graphics programs. Some programs, such as vi, assume that
the	window	is	a	particular	size	according	to	the	specified	termcap	entry.	The	
entry wsiris, for example, assumes a window of 40 lines by 80 columns.
One may add entries to /etc/termcap to support different window sizes.
The –s	flag	causes	reshape	to	set	the	window	to	be	40	rows	by	80	columns	in	
the center of the screen. The –40	flag	 is	 equivalent	 to	 the	–s	flag.	The	–24
flag	 causes	 reshape to set the window to be 24 rows of 80 columns in the
center of the screen.
Instead	of	selecting	a	standard	configuration,	the	size	and	location	may	be	
set to any desired values. The x and y values of the lower left corner of the
textport	window	may	 be	 specified	with	 llx and lly, in screen coordinates
(pixels).	The	size	of	the	window	may	be	specified	with	xlen and ylen which
specify the number of columns and rows respectively, in characters.

SEE ALSO
tpblank(1), tpon(1)

Version 2.1 - 1 - February 1985

ROBOT(1D) Silicon Graphics ROBOT(1D)

NAME
robot

SYNOPSIS
/usr/people/demos/robot

DESCRIPTION
Robot displays a model of an imaginary robot arm. Operator controls adjust
the viewing parameters, the articulation of the arm, and the illumination.
Most user interface is through the mouse and its buttons. Press some com-
bination of buttons and move the mouse to alter the display. The functions
selected are displayed on the lower edge of the screen.
In the default case, the simulated object is lit as by a point source behind
the viewpoint. Type S to simulate light from an arbitrary distant point
source. Hold down MIDDLEMOUSE and RIGHTMOUSE and move the
mouse to alter the altitude and azimuth of the light source. Other combina-
tions	of	buttons	 still	 allow	viewpoint	modification	and	articulation	of	 the	
object. Type s to return to normal illumination.

AUTHOR.
Kurt Akeley.

BUGS
The hidden-surface removal fails at a few extreme positions of the object.

HARDWARE CONFIGURATION
A	minimum	configuration	of	 12	bitplanes	 is	 required.

Version 2.1 - 1 - February 1985

SGILABEL(1) Silicon Graphics SGILABEL(1)

NAME
sgilabel – print the SGI disk label from a drive

SYNOPSIS
sgilabel drive
or
sgilabel fs

DESCRIPTION
Sgilabel	 has	 two	 forms.	 If	 a	drive	 is	 specified	 (e.g.,	md0,	 ip1),	 sgilabel will
print	out	 the	whole	drive	 label,	 as	defined	 in	 the	 fex documentation. This
information includes the drive label, serial number, type of drive and con-
troller,	size	(cylinders/heads/sectors),	and	the	sizes	of	each	file	system	on	the	
drive.
If	a	fs	(file	system)	is	specified	(e.g.,	md0a,	ip1d),	sgilabel will print out the
size	of	 the	file	system	and	the	size	of	a	cylinder	(both	 in	512	byte	blocks).	
(Newfs(1) uses this information.)

FILES
/dev/md*h The h partition accesses the label
/dev/ip*h The h partition accesses the label

SEE ALSO
newfs(1)

Version 2.1 - 2 - February 1985

SGILABEL(1) Silicon Graphics SGILABEL(1)

NAME
shuttle

SYNOPSIS
/usr/people/demos/shuttle

DESCRIPTION
A PATRAN shuttle model can be viewed under mouse control. The mouse
buttons control rotation about the x, y and z axes, viewer distance, and z-
clipping. Unless otherwise noted, only the x-movement of the mouse is a
significant	valuator	when	holding	down	a	mouse	button.	Any	key	toggles	
opening & closing motion of the bay doors on the shuttle.

Mouse buttons Function

left rotation about x-axis via mouse x-motion
middle rotation about y-axis via mouse x-motion
right rotation about z-axis via mouse x-motion
left & middle translate object via mouse x & y motion
left & right zoom back
middle & right zoom forward
all move near z-clipping plane via mouse x-motion

HARDWARE CONFIGURATION
A	minimum	configuration	of	 8	bitplanes	 is	 required	 to	 run	 the	 shuttle.

Version 2.1 - 1 - February 1985

SMT(1) Silicon Graphics SMT(1)

NAME
smt – streaming magnetic tape manipulation program

SYNOPSIS
smt [–t /dev/tapename] command [count]

DESCRIPTION
Smt is used to give commands to a Quarter Inch streaming magnetic tape
drive.	 If	 a	 tape	 name	 is	 not	 specified,	 the	default	 tape	drive	 is	 used.	Smt
uses the default tape device /dev/rmtioctl. By default smt performs the
requested operation once. Operations may be performed multiple times by
specifying count.
The tape default device has the ioctl minor to facilitate the use of opening
and reading the tape when either using a no rewind device or a standard
rewind	and	write	file	mark	on	 close	of	 the	 tape	device.
The available commands are listed below. Only as many characters as are
required	 to	uniquely	 identify	a	 command	need	be	 specified.

eof Write count	 end-of-file	marks	at	 the	 current	position	on	 the	
tape.

fsf Forward space count	files.
fsr Forward space count records.
rewind Rewind the tape (Count is ignored.)
status Print status information about the tape unit. (Count is

ignored.)
help Print command usage information about the command.

(Count is ignored.)
Smt returns a 0 exit status when the operation(s) were successful, smt will
return a 1 if the command was unrecognized, and 2 if an operation failed.
Smt without any arguments will print the help command.

FILES
/dev/rqic Raw magnetic Quarter Inch Cartridge Tape drive
/dev/nrqic No rewind Quarter Inch Cartridge Tape drive
/dev/nrmt* No rewind Quarter Inch Cartridge Tape drive
/dev/rmtioctl Default Raw magnetic Quarter Inch Cartridge Tape drive

BUGS
Smt will sleep when accessing the tape if tape is busy and will awaken only
after the tape is closed from a previous operation.

SEE ALSO
smtio(4)

Version 2.1 - 1 - February 1985

TPBLANK(1) Silicon Graphics TPBLANK(1)

NAME
tpblank – prohibits the system from updating the textport

SYNOPSIS
tpblank

DESCRIPTION
Tpblank prohibits the textport from being updated by non-graphics programs
or when graphics programs exit. This is useful for preventing UNIX from
affecting the screen image while running a series of graphics programs, each
of which produces part of a complete image.

SEE ALSO
reshape(1), tpon(1)

Version 2.1 - 1 - February 1985

TPON(1) Silicon Graphics TPON(1)

NAME
tpon – turn on the console textport

SYNOPSIS
tpon

DESCRIPTION
Tpon allows the textport to be updated by non-graphics programs and when
graphics programs exit. It is useful for re-enabling the textport after invok-
ing tpblank.

SEE ALSO
reshape(1), tpblank(1)

Version 2.1 - 1 - February 1985

UPTIME(1) Silicon Graphics UPTIME(1)

NAME
uptime – show how long system has been up

SYNOPSIS
uptime

DESCRIPTION
Uptime prints the current time, the length of time the system has been up,
and the average number of jobs in the run queue over the last 1, 5 and 15
minutes.	 It	 is,	 essentially,	 the	first	 line	of	 a	w(1) command.

FILES
/vmunix system name list

SEE ALSO
w(1)

Version 2.1 - 1 - February 1985

VMSTAT(1) Silicon Graphics VMSTAT(1)

NAME
vmstat – report virtual memory statistics

SYNOPSIS
vmstat [–fs] [interval [count]]

DESCRIPTION
Vmstat delves into the system and normally reports certain statistics kept
about process, virtual memory, disk, trap and cpu activity. If given a –f
argument, it instead reports on the number of forks since system startup and
the number of pages of virtual memory involved forking. If given a –s argu-
ment, it instead prints the contents of the sum structure, giving the total
number of several kinds of paging related events which have occurred since
boot.
If none of these options are given, vmstat	will	report	in	the	first	line	a	sum-
mary of the virtual memory activity since the system has been booted. If
interval	is	specified,	then	successive	lines	are	summaries	over	the	last	interval
seconds,	“vmstat	5”	will	print	what	the	system	is	doing	every	five	seconds;	
this is a good choice of printing interval since this is how often some of the
statistics	are	sampled	in	the	system;	others	vary	every	second,	running	the	
output for a while will make it apparent which are recomputed every
second. If a count is given, the statistics are repeated count times. The for-
mat	fields	are:
Procs: information about numbers of processes in various states,
r in run queue
b blocked for resources (i/o, paging, etc.)
w runnable or short sleeper (< 20 secs) but swapped
Memory: information about the usage of virtual and real memory. Virtual
pages are considered active if they belong to processes which are running or
have run in the last 20 seconds. A “page” here is 4096 bytes.
avm active virtual pages
fre size of the free list
Page: information about page faults and paging activity. These are averaged
each	five	 seconds,	 and	given	 in	units	per	 second.
re Page reclaims
at text pages lost between execs
pi pages paged in
po pages paged out
fr pages freed per second
de anticipated short term memory shortfall
sr pages scanned by clock algorithm, per-second
up/hp/rk:	Disk	operations	per	 second	 (this	field	 is	 system	dependent).

Version 2.1 - 2 - February 1985

VMSTAT(1) Silicon Graphics VMSTAT(1)

Typically paging will be split across several of the available drives. The
number under each of these is the unit number.
Faults: trap/interrupt rate averages per second over last 5 seconds.
in (non clock) device interrupts per second
sy system calls per second
cs cpu context switch rate (switches/sec)
Cpu: breakdown of percentage usage of CPU time
us user time for normal and low priority processes
sy system time
id cpu idle

FILES
/dev/kmem, /vmunix

AUTHORS
William Joy and Ozalp Babaoglu

BUGS
There should be a screen oriented program which combines vmstat and ps(1)
in real time as well as reporting on other system activity.

Version 2.1 - 1 - February 1985

W(1) Silicon Graphics W(1)

NAME
w – who is on and what they are doing

SYNOPSIS
w [–h] [–s] [user]

DESCRIPTION
W prints a summary of the current activity on the system, including what
each user is doing. The heading line shows the current time of day, how
long the system has been up, the number of users logged into the system,
and the load averages. The load average numbers give the number of jobs
in the run queue averaged over 1, 5 and 15 minutes.
The	fields	output	are:	the	user’s	login	name,	the	name	of	the	tty	the	user	is	
on, the time of day the user logged on, the number of minutes since the
user last typed anything, the CPU time used by all processes and their chil-
dren on that terminal, the CPU time used by the currently active processes,
the name and arguments of the current process.
The –h	 flag	 suppresses	 the	 heading.	 The	 –s	 flag	 asks	 for	 a	 short	 form	 of	
output. In the short form, the tty is abbreviated, the login time and cpu
times are left off, as are the arguments to commands. –l gives the long out-
put, which is the default.
If a user name is included, the output will be restricted to that user.

FILES
/etc/utmp
/dev/kmem
/dev/drum

SEE ALSO
who(1), ps(1)

AUTHOR
Mark Horton

BUGS
The notion of the “current process” is muddy. The current algorithm is
“the highest numbered process on the terminal that is not ignoring inter-
rupts, or, if there is none, the highest numbered process on the terminal”.
This fails, for example, in critical sections of programs like the shell and edi-
tor, or when faulty programs running in the background fork and fail to
ignore interrupts. (In cases where no process can be found, w prints “-”.)
The CPU time is only an estimate, in particular, if someone leaves a
background process running after logging out, the person currently on
that terminal is “charged” with the time.
Background processes are not shown, even though they account for much
of the load on the system.

Version 2.1 - 2 - February 1985

W(1) Silicon Graphics W(1)

Sometimes processes, typically those in the background, are printed with
null or arguments which are garbage. In these cases, the name of the com-
mand is printed in parentheses.
W does not know about the new conventions for detection of background
jobs.	 It	will	 sometimes	find	a	background	 job	 instead	of	 the	 right	one.

Version 2.1 - 1 - February 1985

WSIRIS(1) Silicon Graphics WSIRIS(1)

NAME
wsiris – emulate an IRIS terminal with a workstation

SYNOPSIS
wsiris [–hnrs] hostname

DESCRIPTION
Wsiris allows a Workstation to emulate an IRIS terminal communicating over
XNS. The actual connection (as opposed to the one emulated) may be
either via XNS or over a serial line running at 1200 or 9600 baud.
When connecting via XNS, hostname should be the name of the system to
connect to (set by hostname prior to invoking xnsd on the host system).
When connecting via a serial line, hostname should be the word “serial”.
The options are:

–h Half duplex line.

–n The terminal will not send X-on/X-off commands to the host.

–r Convert NL to CR for VMS connections.

–s Slow speed (1200 baud). Usable on serial connections only.
The serial connection uses port 3, which is /dev/ttyd2. To exit wsiris, type:

~.

Version 2.1 - 1 - February 1985

IBTAB(3) Silicon Graphics IBTAB(3)

NAME
ibtab	–	package	 for	dealing	with	 ibtab	files

SYNOPSIS
setibfile(file)	 char	 *file;
int setibent()
endibent()
struct ibtab *getibent()
int	 ibnflags(flagstr,_val)	 char	 *flagstr;	 int	 *_val;

DESCRIPTION
This is a basic set of routines for dealing with ibtab(5)	 format	files	such	as	
/etc/ibtab. By default /etc/ibtab is used. Setibfile changes the default within the
calling program.
Setibent	opens	and	positions	the	file	at	the	origin.	Getibent returns a pointer
to a (static) structure containing the "next" entry. 0 is returned at the end-
of-file.	 The	 structure	 is	 declared	 in	 the	 include	 file	 <ibtab.h>. Endibent
closes	 the	file.
Ibnflags	interprets	the	Flags	(.ibt_flags)	field,	saving	its	numeric	equivalent	in	
the caller-supplied _val. The return value is 0 if the string is a legitimate
expression, -1 otherwise.

EXAMPLE
#include "ibtab.h"
extern	 struct	 ibtab	 *getibent();
struct	 ibtab	 *ip;
int	val;
...
setibent();
while((ip = getibent()) != 0)
{
	 if(ibnflags(ip->	 ibt_flags,	&val)	<	0)
	 	 printf("illegal	flags	 string	%s\n",ip->ibt_flags);
 else
	 	 printf("%s	 -->	0x%x\n",ip->ibt	flags,val);
}
endibent();

FILES
/etc/ibtab

SEE ALSO
ib(4), iib(1), ibtab(5)

BUGS
Getibent stores data in static areas. Return values are over-written by
subsequent calls.

Version 2.1 - 1 - February 1985

A.OUT(4) Silicon Graphics A.OUT(4)

NAME
a.out – assembler and link editor output

SYNOPSIS
#include <a.out.h>

DESCRIPTION
A.out	 is	 the	 output	 file	 of	 the	 assembler	 as(1) and the link editor ld(1).
Both programs make a.out executable if there were no errors and no un-
resolved external references. Layout information as given in the include
file	 is:
/*
	 *	Header	prepended	 to	 each	a.out	file.
 */
struct exec {
	 long	a_magic;	 /*	magic	number	 */
	 unsigned	a_text;	 /*	 size	of	 text	 segment	 */
	 unsigned	a_data;	 /*	 size	of	 initialized	data	 */
	 unsigned	a_bss;	 /*	 size	of	uninitialized	data	 */
	 unsigned	a_syms;	 /*	 size	of	 symbol	 table	 */
	 unsigned	a_trsize;	 /*	 size	of	 text	 relocation	 */	
	 unsigned	a_drsize;	 /*	 size	of	data	 relocation	 */
	 unsigned	a_entry;	 /*	 entry	point	 */
};

#define	OMAGIC	040	 /*	old	 impure	 format	 */
#define	NMAGIC	0410	 /*	 read-only	 text	 */

/*
 * Macros which take exec structures as arguments and tell whether
	 *	 the	file	has	a	 reasonable	magic	number	or	offsets	 to
 * text | symbols | strings.
 */
#define	N_BADMAG(x)	\
 (((x).a_magic)!=OMAGIC && ((x).a_magic)!=NMAGIC)

#define	N_TXTOFF(x)	\
 (sizeof (struct exec))
#define	N_SYMOFF(x)	\
 (N_TXTOFF(x) + (x).a_text+(x).a_data \
 + (x).a_trsize+(x).a_drsize)
#define	N_STROFF(x)	\
 (N_SYMOFF(x) + (x).a_syms)
The	file	has	five	 sections:	 a	 header,	 the	program	 text	 and	data,	 relocation	
information, a symbol table and a string table (in that order). The last three
may be omitted if the program was loaded with the ‘–s’ option of ld or if the

Version 2.1 - 2 - February 1985

A.OUT(4) Silicon Graphics A.OUT(4)

symbols and relocation have been removed by strip(1).
In the header the sizes of each section are given in bytes. The size of the
header is not included in any of the other sizes.
When an a.out	 file	 is	 executed,	 three	 logical	 segments	 are	 set	 up:	 the	 text	
segment, the data segment (with uninitialized data, which starts off as all 0,
following initialized), and a stack. The text segment begins at 0x1000 in the
core	image;	the	header	is	not	loaded.	If	the	magic	number	in	the	header	is	
OMAGIC (0407), it indicates that the text segment is not to be write-
protected and shared, so the data segment is immediately contiguous with
the text segment. This is the oldest kind of executable program and is rarely
used. If the magic number is NMAGIC (0410) the data segment begins at
the	first	4096	byte	boundary	 following	the	 text	segment,	and	the	 text	seg-
ment	 is	 not	writable	 by	 the	program;	 if	 other	processes	 are	 executing	 the	
same	file,	 they	will	share	the	text	segment.	This	 is	 the	default	 format	pro-
duced by ld(1).
After	the	header	in	the	file	follow	the	text,	data,	text	relocation	data	reloca-
tion, symbol table and string table in that order. The text begins immedi-
ately following the header, as given by the N_TXTOFF macro. The data seg-
ment is contiguous with the text and immediately followed by the text relo-
cation and then the data relocation information. The symbol table follows
all	 this;	 its	 position	 is	 computed	 by	 the	 N_SYMOFF	 macro.	 Finally,	 the	
string table immediately follows the symbol table at a position which can be
gotten	easily	using	N_STROFF.	The	first	4	bytes	of	the	string	table	are	not	
used	 for	string	storage,	but	 rather	contain	 the	size	of	 the	string	 table;	 this	
size INCLUDES the 4 bytes, the minimum string table size is thus 4.
The	layout	of	a	symbol	table	entry	and	the	principal	flag	values	that	distin-
guish	 symbol	 types	are	given	 in	 the	 include	file	as	 follows:
/*
 * Format of a symbol table entry.
 */
struct nlist {
 union {
	 	 char	 *n_name;	 /*	 for	use	when	 in-core	 */
	 	 long	 n_strx;	 /*	 index	 into	file	 string	 table	 */
	 }	n_un;
	 unsigned	char	 n_type;	 /*	 type	flag,	 i.e.	N_TEXT	etc	 */
	 char	 n_other;
	 short	 n_desc;	 /*	 see	<stab.h>	 */
	 unsigned	 n_value;	 /*	value	of	 this	 symbol	 */
};
#define	 n_hash	 n_desc	 /*	used	 internally	by	 ld	 */

Version 2.1 - 3 - February 1985

A.OUT(4) Silicon Graphics A.OUT(4)

/*
 * Simple values for n_type.
 */
#define	 N_UNDF	 0x0	 /*	undefined	 */
#define	 N_ABS	 0x2	 /*	absolute	 */
#define	 N_TEXT	 0x4	 /*	 text	 */
#define	 N_DATA	 0x6	 /*	data	 */
#define	 N_BSS	 0x8	 /*	bss	 */
#define	 N_COMM	 0x12	 /*	 common	 (internal	 to	 ld)	 */
#define	 N_FN	 0x1f	 /*	file	name	symbol	 */

#define	 N_EXT	 01	 /*	 external	bit,	 or’ed	 in	 */
#define	 N_TYPE	 0x1e	 /*	mask	 tor	all	 the	 type	bits	 */

/*
 * Other permanent symbol table entries
 * have some of the N_STAB bits set.
 * These are given in <stab.h>
/*
#define	 N_STAB	 0xe0	 /*	 if	 any	of	 these	 set,	keep	/*

/*
 * Format for namelist values.
/*
#define	 N_FORMAT	"%08x"
In the a.out	file	a	symbol’s	n_un.n_strx	field	gives	an	index	into	the	string	
table. A n_strx value of 0 indicates that no name is associated with a partic-
ular	symbol	table	entry.	The	field	n_un.n_name	can	be	used	to	refer	to	the	
symbol name only if the program sets this up using n_strx and appropriate
data from the string table.
If	a	symbol’s	type	is	undefined	external,	and	the	value	field	is	non-zero,	the	
symbol is interpreted by the loader ld as the name of a common region
whose size is indicated by the value of the symbol.
The value of a byte in the text or data which is not a portion of a reference
to	an	undefined	external	symbol	is	exactly	that	value	which	will	appear	in	
memory	when	 the	file	 is	executed.	 If	a	byte	 in	 the	 text	or	data	 involves	a	
reference	 to	 an	undefined	 external	 symbol,	 as	 indicated	 by	 the	 relocation	
information,	then	the	value	stored	in	the	file	is	an	offset	from	the	associated	
external	symbol.	When	the	file	is	processed	by	the	link	editor	and	the	exter-
nal	symbol	becomes	defined,	the	value	of	the	symbol	will	be	added	to	the	
bytes	 in	 the	file.
If relocation information is present, it amounts to eight bytes per relocatable
datum as in the following structure:

Version 2.1 - 4 - February 1985

A.OUT(4) Silicon Graphics A.OUT(4)

/*
 * Format of a relocation datum.
 */
struct relocation_info {
	 int	 r_address;	 /*	address	which	 is	 relocated	 */
 unsigned r_symbolnum:24, /* local symbol ordinal */
 r_pcrel:1, /* was relocated pc relative */
 r_length:2, /* 0=byte, 1=word, 2=long */
 r_extern:1, /* doesn’t include sym’s value */
	 	 :4;	 /*	nothing,	yet	 */
};
There is no relocation information if a_trsize+a_drsize==0. If r_extern is 0,
then r_symbolnum is actually a n_type for the relocation (i.e. N_TEXT mean-
ing relative to segment text origin.)

SEE ALSO
as(1), ld(1), strip(1), nm(1), adb(1), dbx(1), stab(4)

Version 2.1 - 1 - February 1985

IB(4) Silicon Graphics IB(4)

NAME
ib – IEEE 488 interface

SYNOPSIS
device ib0 at mb0 csr 0x020 priority 5 vector ibintr
device ib1 at mb0 csr 0x100 priority 5 vector ibintr

DESCRIPTION
This is the driver for the National Instruments GPIB-796 IEEE 488 bus con-
troller. Talker and Listener functions are provided. The driver may be ini-
tialized to provide Controller functions as well. After initialization and
startup (eg, with iib(1l)),	 bytes	written	 to	 the	 device	 file	 are	 talked	 to	 the	
corresponding	listener,	and	bytes	read	from	the	device	file	are	listened	from	
the corresponding talker. The "End" bit is sent with the last byte of each
write request. Read requests return up to the next "End" byte. Writes are
synchronous.
From the driver’s perspective, the 488 bus connects up to 8 "nodes" (physi-
cal slots), of which its controller is the 0th. The low-order 3 bits of the
minor device number are the correspondent’s node number (this is not the
same thing as its gpib address). The remaining bits specify which controller
if the workstation has more than one.
The	driver	must	be	fully	initialized	before	it	can	be	used	for	file	i/o,	since	it	
needs a certain amount of "system integrator" information to function. In
particular, the driver will function as Controller In Charge if the initializa-
tion (see IBIOSETNODE) designates it as System Controller. Startup marks
the end of initialization. Initialization and miscellaneous functions are pro-
vided via ioctl(2). Some of these functions are available only to the super-
user.	 The	 codes	 and	 structures	 are	 defined	 in	 the	 standard	 include	 file	
<sys/lib_ioctl.h>.
ioctl(fd,IBIOGETNODE,struct_sgnode_ptr)

Fills in the struct_sgnode_ptr->node	field	with	the	driver’s	current	idea	
of the per-node system integrator information for the node (physical
slot) number given in the struct_sgnode_ptr->slotno	field.

ioctl(fd,IBIOSETNODE,struct_sgnode_ptr)
Changes the driver’s per-node system integrator information for
the node number given in the struct_sgnode_ptr->slotno	 field,	 ac-
cording to the struct_sgnode_ptr->node	 field.	 Super-user	 only,	 and	
only before startup.

ioctl(fd,IBIOSTART,int_ptr)
Ends	 initialization	 and	 allows	 normal	 file	 i/o	 to	 occur	 if	 *int_ptr
is non0, otherwise just re-enters initialization. Super-user only.

ioctl(fd,IBIOINIT,0)
Initializes (or re-initializes) the driver’s internal data structures. This

Version 2.1 - 2 - February 1985

IB(4) Silicon Graphics IB(4)

call should only be made when no other processes are using the
driver. Super-user only.

ioctl(fd,IBIOPPC,int_ptr)
Remotely	configures	the	given	nodes	for	parallel	polling.	If	bit	i of
*int_ptr is 1, node i	is	configured	according	to	its	n_ppr as set by the
IBIOSETNODE ioctl. Only nodes with IBN_VALID and IBN_PPC set
in the n_flags	field	are	configured.	By	default,	node	i uses line i for
parallel polling. This call is not interruptible.

ioctl(fd,IBIOPOLL,char_15_ptr)
Fills	in	the	given	array	with	the	responses	from	the	last	poll;	posi-
tion i is the response from node i. Responses with the 0100 (octal)
bit	turned	on	are	considered	active;	other	responses	are	considered	
inactive and are ignored. If no poll has been done since the previ-
ous IBIOPOLL call, return is not until the next poll occurs. The
driver performs polls automatically in response to Service Request
events:	a	parallel	poll	 is	done	first,	 followed	by	a	 serial	poll	of	all	
matching nodes known to be capable of responding to a parallel
poll, plus all nodes known to be incapable of responding to a paral-
lel poll. Parallel poll responses are assumed to be "in-phase," ie,
logic 1 when active. This call is effective only if issued from the
Controller In Charge side.

ioctl(fd,IBIOSRQ,int_ptr)
Raises Service Request with *int_ptr as poll status. The poll status
must have the 0100 (octal) bit turned on. Returns when serial-polled
or timeout (currently about 10 seconds). This call is not interrupti-
ble.

ioctl(fd,IBIOTAKECTL,0)
Waits for the interface to become Controller In Charge. Super-user
only, and only after startup. This cannot take effect until the driver
is quiescent. This call is not interruptible.

ioctl(fd,IBIOPASSCTL,int_ptr)
Passes control to the node indicated by *int_ptr. Super-user only,
and only after startup. This cannot take effect until the driver is
quiescent. This call is not interruptible. This call is effective only if
issued from the Controller In Charge side.

ioctl(fd,IBIOCUTOFF,0)
Unaddresses the current talker and listener. This does not interfere
with normal driver operation (normally the driver does not unad-
dress the current talker or listener until another talker or listener is
selected;	this	call	unaddresses	and	forces	re-addressing	next	time).	
This call is effective only if issued from the Controller In Charge
side.

Version 2.1 - 3 - February 1985

IB(4) Silicon Graphics IB(4)

In general iib(1l)	 is	 sufficient	 for	dealing	with	 ib	driver	 ioctl’s.
The	most	efficient	blocksize	for	writes	is	1024	bytes.	Throughput	may	reach	
110 *1024 bytes per second. The IEEE 488 "compliance" code for this device
and driver is approximately

SH1 AH1 C5 T8 L4 SR1 RL0 PP1

FILES
/dev/ib[01][0-7]

SEE ALSO
cib(8l), dib(8l), iib(1l).

DIAGNOSTICS
See intro(2).

BUGS
When the interface is not Controller In Charge, the driver has no knowledge
of the actual destination when it talks or the actual source when it listens:
data from write requests is talked to whatever node happens to be listening
when	 the	 interface	 is	 addressed	 to	 talk;	 listened	 data	 is	 put	 in	 an	 an-
onymous queue, which is used to satisfy read requests as if it had come
from the requested node. In practical terms, this means that when the
interface is not Controller In Charge it only talks or listens to the actual Con-
troller In Charge.

Due to hardware limitations, killing a program while it’s listening may occa-
sionally scramble subsequent transfers.

Due to hardware limitations, the driver may occasionally hang when
addressed to listen.

Responds	 to	Service	Requests	only	when	 the	file	 is	open.

No raw i/o. No asynchronous i/o.

Version 2.1 - 1 - February 1985

SMTIO(4) Silicon Graphics SMTIO(4)

NAME
smtio – UNIX streaming magnetic tape interface

DESCRIPTION
The	special	file	/dev/rmt1 refers to the UNIX streaming magtape drive, which
is on the MULTIBUS using the DSD-5217 controller. The following descrip-
tion	 applies	 to	 any	 of	 the	 transport/controller	 pairs.	 The	 special	 files	
/dev/rmt1, /dev/qic, and /dev/mt1 are 10000 fci, 450 ft, 45 ips, 45 MByte Quar-
ter Inch Tape streaming drives, e.g., Archive, Wangtek or Cipher.
/dev/nrqic, /dev/nrmt1, and /dev/nmt1 are no rewind devices with the same
specifications	as	above.	/dev/nrmt1	is	the	special	file	meant	as	the	default	to	
smt commands. Refer to smt(1)	 for	 the	specifications	of	 ioctl	commands	to	
manipulate	 the	 tape	 drives.	 The	 files	 /dev/rqic, /dev/rmt1, and /dev/mt1 are
rewound	when	closed;	the	others	are	not.	These	files	will	also	be	closed	by	
writing	a	file	mark.	The	other	files	will	not	be	 rewound	upon	close.	They	
will	also	write	a	file	mark	but	will	be	positioned	at	the	file	mark	for	addi-
tional	files	 to	be	added	 to	 the	 tape	 cartridge.
A standard tape consists of a series of 512 byte records terminated by an
end-of-file.	 The	 system	makes	 it	 possible	 to	 treat	 the	 tape	 like	 any	 other	
file.	 Seeks	do	not	have	 their	usual	meaning	 and	 it	 is	 not	possible	 to	 read	
or write a byte at a time. Writing in very small blocks (less than 5120
bytes) is inadvisable because this tends to create large record gaps and
causes the tape to stop streaming. The tape drive must then reposition
the tape cartridge for the next write or read. This causes a slower per-
formance due to the tape moving backwards and forwards and stopping
and starting.
The smt(1) manipulation program discussed above is useful when it is
desired	 to	 access	 the	 tape	 in	 a	way	 compatible	with	ordinary	files.	When	
foreign tapes are to be dealt with, and especially when long records are to
be read or written, the raw’ interface is appropriate. The standard format
for referring to the ‘blocked’ device is /dev/mt1, but the ‘raw’ and the
‘blocked’ devices are the same for the Quarter Inch Streaming tape drive.
The	associated	files	are	named	 /dev/rmt1 and /dev/rqic but the same minor
device considerations as for the regular devices still apply. A number of
ioctl operations are available on raw magnetic tape. Refer to smt(1) for addi-
tional information for use with /dev/nrmt1.	 The	 following	 definitions	 are	
from /usr/include/sys/mtio.h:
/*
	 *	 Structures	and	definitions	 for	mag	 tape	 io	 control	 commands
 */

/* structure for MTIOCTOP - mag tape op command */
struct mtop {
	 short	 mt_op;	 /*	operations	defined	below	*/
	 daddr_t	 mt_count;	 /*	how	many	of	 them	*/

Version 2.1 - 2 - February 1985

SMTIO(4) Silicon Graphics SMTIO(4)

};

/* operations */
#define	 MTWEOF	 0	 /*	write	an	end-of-file	 record	 */
#detine	 MTFSF	 1	 /*	 forward	 space	file	 */
#define	 MTFSR	 3	 /*	 forward	 space	 record	 */
#define	 MTREW	 5	 /*	 rewind	 */
#define	 MTNOP	 7	 /*	no	operation,	 sets	 status	only	 */

/* structure for MTIOCGET - mag tape get status command */

struct mtget {
	 short	 mt_type;	 /*	 type	of	magtape	device	 */
/* the following six registers are very device dependent */
	 short	 mt_hard_error0;	 /*	hard	error	byte	0	of	status	from	DSD	*/
	 short	 mt_hard_error1;	 /*	hard	error	byte	1	of	status	from	DSD	*/
	 short	 mt_soft_error0;	 /*	soft	error	byte	of	status	from	DSD	*/
	 short	 mt_at_bot;	 /*	byte	0xff	when	 tape	at	bot	 */
	 short	 mt_retries;	 /*	byte	number	of	retries	by	tape	drive	*/
	 short	 mt_file_mark;	 /*	byte	0xff	when	file	mark	encountered	*/
/* end device-dependent registers */
	 daddr_t	mt_fileno;	 /*	file	number	of	 current	position	 */
	 daddr_t	mt_blkno;	 /*	block	number	of	 current	position	 */
};	

/*
 * Constants for mt_type byte
 */
#define	 MT_ISTS	 0x01	 /*	Streaming	Quarter	Inch	Tape	Drive	*/

/* mag tape io control commands */
#define	 MTIOCTOP	 ((‘m’<<8)|1)	 /*	do	a	mag	 tape	op	 */
#define	 MTIOCGET	 ((‘m’<<8)|2)	 /*	get	 tape	 status	 */

#ifndef KERNEL
#define	 DEFTAPE	 "/dev/rmtioctl"	/*	 IOCTL	device	 */
#endif
Each read or write call reads or writes the next record on the tape. In the
write case the record has the same length as the buffer given. Each tape
write	will	write	one	file	mark	on	close	and	will	 either	 rewind	or	position	
itself	at	the	file	mark.	Addition	writes	will	be	positioned	after	the	file	mark	
and can be accessed by using the smt(1) streaming tape manipulation pro-
gram.

Version 2.1 - 3 - February 1985

SMTIO(4) Silicon Graphics SMTIO(4)

FILES
/dev/mt1 Cartridge tape
/dev/rmt1 Cartridge tape
/dev/rqic Cartridge tape
/dev/nrmt1 Cartridge tape — no rewind
The	minor	device	numbers	for	each	of	the	above	devices	to	build	special	files	
using mknod(1) is based on the standard default minor device number being
0x00. The minor device number for the /dev/nrmt* and /dev/nrqic is 0x01. The
above minor device numbers refer to tape drive 0 of the DSD controller and
at present the hardware only supports this one tape drive.

SEE ALSO
smt(1), tar(1), cpio(1)

BUGS
The status should be returned in a device independent format, but the
status returned is very device independent.

Version 2.1 - 1 - February 1985

STAB(4) Silicon Graphics STAB(4)

NAME
stab – symbol table types

SYNOPSIS
#include <stab.h>

DESCRIPTION
Stab.h	defines	some	values	of	 the	n_type	field	of	the	symbol	table	of	a.out	
files.	These	are	 the	types	for	permanent	symbols	 (i.e.	not	 local	 labels,	etc.)	
used by the debugger dbx. Symbol table entries can be produced by the
.stabs assembler directive. This allows one to specify a double-quote delim-
ited name, a symbol type, one char and one short of information about the
symbol, and an unsigned long (usually an address). To avoid having to
produce	 an	 explicit	 label	 for	 the	 address	 field,	 the	 .stabd directive can be
used to implicitly address the current location. If no name is needed, sym-
bol table entries can be generated using the .stabn directive. The loader
promises to preserve the order of symbol table entries produced by .stab
directives. As described in a.out(4), an element of the symbol table consists
of the following structure:
/*
 * Format of a symbol table entry.
 */
struct nlist {
 union {
	 	 char	 *n_name;	 /*	 for	use	when	 in-core	 */	
	 	 long	 n_	strx;	 /*	 index	 into	file	 string	 table	 */
	 }	n_un;
	 unsigned	char	 n_type;	 	 /*	 type	flag	 */	
	 char	 	 n_other;	 /*	unused	 */
	 short	 	 n_desc;	 /*	 see	 struct	desc,	below	*/
	 unsigned	n_value;	 	 /*	address	or	offset	or	 line	 */
};
The	low	bits	of	the	n_type	field	are	used	to	place	a	symbol	into	at	most	one	
segment,	 according	 to	 the	 following	masks,	 defined	 in	 <a.out.h>. A sym-
bol can be in none of these segments by having none of these segment bits
set.
/*
 * Simple values for n_type.
 */
#define	N_UNDF	 0x0	 /*	undefined	 */
#define	N_ABS	 0x2	 /*	absolute	 */
#define	N_TEXT	 0x4	 /*	 text	 */
#define	N_DATA	 0x6	 /*	data	 */
#define	N_BSS	 0x8	 /*	bss	 */

Version 2.1 - 2 - February 1985

STAB(4) Silicon Graphics STAB(4)

#define	N_EXT	 01	 /*	 external	bit,	 or’ed	 in	 */
The	n_value	field	of	a	symbol	is	relocated	by	the	linker,	ld(1) as an address
within	the	appropriate	segment.	N_value	fields	of	symbols	not	in	any	seg-
ment are unchanged by the linker. In addition, the linker will discard cer-
tain	symbols,	according	to	rules	of	its	own,	unless	the	n_type	field	has	one	
of the following bits set:
/*
 * Other permanent symbol table entries have some of the N_STAB bits set.
 * These are given in <stab.h>
 */
#define	N_STAB	 0xe0/*	 if	 any	of	 these	bits	 set,	don’t	discard	 */

This allows up to 112 (7 * 16) symbol types, split between the various seg-
ments. Some of these have already been claimed. The symbolic debugger,
dbx, uses the following n_type values:
#define	N_GSYM	 0x20	 /*	global	 symbol:	name„0,type,0	 */
#define	N_FNAME	 0x22	 /*	procedure	name	 (f77	kludge):	name,,0	 */
#define	N_FUN	 0x24	 /*	procedure:	name,,0,linenumber,address	 */
#define	N_STSYM	 0x26	 /*	 static	 symbol:	name,,0,type,address	 */
#define	N_LCSYM	 0x28	 /*	 .lcomm	symbol:	name,,0,type,address	 */
#define	N_RSYM	 0x40	 /*	 register	 sym:	name,,0,type,register	 */
#define	N_SLINE	 0x44	 /*	 src	 line:	 0,,0,linenumber,address	 */
#define	N_SSYM	 0x60	 /*	 structure	elt:	name,,0,	 type,struct_offset	 */
#define	N_SO	 0x64	 /*	 source	file	name:	name,,0,0,address	 */
#define	N_LSYM	 0x80	 /*	 local	 sym:	name,,0,type,offset	 */
#define	N_SOL	 0x84	 /*	#included	file	name:	name,,0,0,address	 */
#define	N_PSYM	 0xa0	 /*	parameter:	name,,0,type,offset	 */
#define	N_ENTRY	 0xa4	 /*	alternate	 entry:	name,linenumber,address	 */
#define	N_LBRAC	 0xc0	 /*	 left	bracket:	 0,,0,nesting	 level,address	 */
#define	N_RBRAC	 0xe0	 /*	 right	bracket:	 0,,0,nesting	 level,address	 */
#define	N_BCOMM	 0xe2	 /*	begin	 common:	name,,	 */
#define	N_ECOMM	 0xe4	 /*	 end	common:	name,,	 */
#define	N_ECOML	 0xe8	 /*	 end	common	 (local	name):	 ,,address	 */
#define	N_LENG	 0xfe	 /*	 second	stab	entry	with	 length	 information	 */
where the comments give dbx conventional use for .stabs and the n_name,
n_other,	 n_desc,	 and	 n_value	 fields	 of	 the	 given	 n_type.	 Dbx uses the
n_desc	field	to	hold	a	type	specifier	in	the	form	used	by	the	Portable	C	Com-
piler, cc(1),	 in	which	a	base	 type	 is	qualified	 in	 the	 following	 structure:
struct desc {
 short q6:2,
 q5:2,
 q4:2,

Version 2.1 - 3 - February 1985

STAB(4) Silicon Graphics STAB(4)

 q3:2,
 q2:2,
 q1:2,
	 	 basic:4;
};
There	are	four	qualifications,	with	q1	the	most	significant	and	q6	the	least	
significant:

0 none
1 pointer
2 function
3 array

The sixteen basic types are assigned as follows:
0	 undefined
1 function argument
2 character
3 short
4 int
5 long
6	 float
7 double
8 structure
9 union
10 enumeration
11 member of enumeration
12 unsigned character
13 unsigned short
14 unsigned int
15 unsigned long

SEE ALSO
as(1), ld(1), dbx(1), a.out(4)

Version 2.1 - 1 - February 1985

IBTAB(4) Silicon Graphics IBTAB(4)

NAME
ibtab	–	 format	of	 ibtab	file

SYNOPSIS
/etc/ibtab

DESCRIPTION
The	ibtab	file	is	an	unordered	collection	of	entries,	each	of	which	describes	
one IEEE 488 bus node. Its format is understood by the ibtab(3) subroutine
package, which is used by programs such as iib(1). The format and the
package are loosely patterned after fstab(3,5), getpio(3), and passwd(5). Each
entry	consists	of	a	line	with	colon-separated	fields.	Numeric	items	are	inter-
preted according to the usual C rules: leading 0x implies hex, leading 0
implies octal, default decimal
FIELDS
File

the	 ib	file	used	 to	access	 the	node.
Cfile

the	 control	file	used	 to	 ioctl	 (control)	 the	node.
Node

the	node	 (physical	 slot)	number	with	 respect	 to	 the	 control	file.	The	
host’s node number is 0.

Flags
flags	 pertaining	 to	 the	 node,	 as	 defined	 in	 the	 include	 file	
<sys/ib_ioctl.h>.	 This	 field	 may	 be	 numeric	 or	 symbolic,	 with	 sym-
bols	separated	by	the	‘|’	character	or	white	space.	Possible	flags	are:	
SWAB,	 if	 the	 node	 does	 byte-reversed	 IEEE	 488	 bus	 i/o;	 VALID,	 if	
the	 node	 is	 for	 real;	 SRQ,	 if	 the	 node	 can	 assert	 SRQ;	 PPE,	 if	 the	
node	can	respond	to	parallel	polls;	PPC,	if	 the	node	can	be	remotely	
configured	 for	parallel	polls;	 SC,	 if	 the	node	 is	 system	controller.

Tag
the IEEE 488 bus address of the node.

Ppr
the parallel poll response. The low-order 3 bits specify which line
the	 node	 uses	 for	 parallel	 poll	 responses.	 This	 field	 is	 significant	
only	 if	 the	 IBN_PPC	or	 IBN_PPE	flags	are	present.

Comment
ignored.

Lines beginning with the character are ignored.

EXAMPLE
sample entry
node 1, /dev/ib01

Version 2.1 - 2 - February 1985

IBTAB(4) Silicon Graphics IBTAB(4)

controlled by /dev/ib00
byte-reversed, can srq and ppoll
gpib address 19
ppoll line 3
/dev/ib01:/dev/ib00:1:VALID|SWAB|SRQ:19:03:board 0 node 1

FILES
SEE ALSO

ib(4), iib(1), ibtab(3)

Version 2.1 - 1 - February 1985

AUTOCONF(7) Silicon Graphics AUTOCONF(7)

NAME
autoconf	–	diagnostics	 from	 the	autoconfiguration	 code	

DESCRIPTION
When UNIX bootstraps it probes the innards of the machine it is running
on and locates controllers, drives, and other devices, printing out what it
finds	 on	 the	 console.	 This	 procedure	 is	 driven	 by	 a	 system	 configuration	
table which is processed by config(8) and compiled into each kernel.
MULTIBUS devices are located by probing to see if their control-status
registers	 respond.	 If	 not,	 then	 the	 autoconfigure	 code	 will	 print	 out	
a message of the form “xx not installed”. If the control status register
responds but the device cannot be correctly initialized, a diagnostic warn-
ing will be printed on the console and the device will not be available to
the system.
The variables rootdev and swapdev are used as prototypes in the kernel to
specify	where	the	system	will	find	the	root	and	swap	devices,	respectively.	
As each disk drive is attached to its controller, the systems checks for a
match against the rootdev and swapdev variables.
If	the	given	drive	has	a	root	partition	on	it	(specified	in	the	boot	label)	and	
the same unit number as stored in rootdev then it is chosen as the potential
root drive. The last such drive found is used as the rootdev (thus ordering of
the config	file	 is	 important).
If	the	given	drive	has	a	swap	partition	on	it	(specified	in	the	boot	label)	and	
the same unit number as stored in swapdev then it is chosen as the potential
swap drive. The last such drive found is used as the swapdev (thus ordering
of the config	file	 is	 important).

SEE ALSO
intro(7),	dklabel(7),	 config(8)

DIAGNOSTICS
%s%d at mbio 0x%04x ipl %d. This message is printed when probing a
simple device or a controller. It means that the device successfully initial-
ized	itself	(or	lied	about	it	anyway);	is	running	at	the	printed	multibus	I/O	
address (“mbio”) and will interrupt at priority level “ipl”.
%s%d slave %d. The slave given drive (tape or disk) is attached as the
printed slave to the previous controller printed.
%s%d not installed. The given device was not found on the multibus.
%s%d dead. The given device responded to its multibus address, but did
not behave correctly. This might mean something is broken, or that two
boards are wired with the same multibus i/o address. Typically, however, if
two boards are mis address they won’t probe at all, or the machine will
hang trying to access them.

Version 2.1 - 2 - February 1985

AUTOCONF(7) Silicon Graphics AUTOCONF(7)

stray interrupt level %d. An interrupt occurred for which there is no inter-
rupt service routine. A related message, panic: default_intr, will follow this
message.
root on %s%d%c. Once all the controllers and devices have been probed,
the	autoconfigure	 routines	will	print	out	 the	 chosen	 root	device.
swap on %s%d%c [%dK]. Once all the controllers and devices have been
probed,	the	autoconfigure	routines	will	print	out	the	chosen	swap	device	as	
well as it size.

Version 2.1 - 3 - February 1985

AUTOCONF(7) Silicon Graphics AUTOCONF(7)

NAME
drum – paging device

DESCRIPTION
This	file	refers	to	the	paging	device	in	use	by	the	system.	This	may	actually	
be a subdevice of one of the disk drivers, but in a system with paging inter-
leaved across multiple disk drives it provides an indirect driver for the multi-
ple drives.

FILES
/dev/drum

BUGS
Reads from the drum are not allowed across the interleaving boundaries
Since these only occur every .5Mbytes or so, and since the system never
allocates blocks across the boundary, this is usually not a problem.

Version 2.1 - 1 - February 1985

DSD(7) Silicon Graphics DSD(7)

NAME
dsd	–	Qualogy	5217	 st-506	disk/tape/floppy	controller	

SYNOPSIS
controller dsd0 at mb0 csr 0x7F00 priority 1 vector dsdintr
disk	md0	at	dsd0	drive	1	flags	0x00
disk	md1	at	dsd0	drive	2	flags	0x00

DESCRIPTION
This is a MULTIBUS st-506 disk and tape controller. The driver software
supports two Winchester hard disk drives, one qic-02 streaming tape drive,
and	 one	 floppy	 drive.	 This	man	 page	 documents	 the	 hard	 disk	 support.	
See qic(7) for information on the streaming tape support and floppy(7) for
the	floppy	 support.
Files with minor device numbers 0 through 7 refer to various portions of
drive	0;	minor	devices	8	through	15	refer	to	drive	1,	etc.	The	standard	dev-
ice names begin with “md” followed by the drive number and then a letter
a-h for partitions 0-7 respectively. The character ? stands here for a drive
number in the range 0-7.
The	block	files	access	the	disk	via	the	system’s	normal	buffering	mechanism	
and may be read and written without regard to physical disk records. There
is also a ‘raw’ interface which provides for direct transmission between the
disk and the user’s read or write buffer. A single read or write call results in
exactly	one	I/O	operation	and	therefore	raw	I/O	is	considerably	more	effi-
cient	when	many	words	 are	 transmitted.	The	names	of	 the	 raw	files	 con-
ventionally begin with an extra ‘r.’
In raw I/O counts should be a multiple of 512 bytes (a disk sector). Likewise
seek calls should specify a multiple of 512 bytes.
The size of the various partitions supported by the driver in fact are a func-
tion of the drive itself. Present on each drive is a boot label which contains
the partitions sizes and locations.

FILES
/dev/md[01][a-h]	block	files
/dev/rmd[01][a-h]	 raw	files

SEE ALSO
autoconf(7),	dklabel(7),	qic(7),	floppy(7)

DIAGNOSTICS
panic: dsdattach: geteblk0 failed. Can’t happen. See a guru.
md%d (***No label***). The named drive has no boot label and thus can-
not be used.
(%s Name: %s). On a successful attach, the drive type is printed out
followed	by	 its	 “name”	 (a	user	 specifiable	name).
md%d%c: %s err(%s) at %d/%d/%d retry:%d

Version 2.1 - 2 - February 1985

DSD(7) Silicon Graphics DSD(7)

%d/%d/%d req%d atc%d. A hard error of some sort occurred.
dsdcmd: dsdbusy was not set to Zero(0)
panic: dsd: no status posted
dsd: cmd(%s), dev(%d), controller is hung on the bus
panic: dsd: couldn’t start!
dsd: interrupt with empty queue
dsd: zero status
panic: dsdstatus
dsdstatus: dsdcmd failure
dsd: soft error: dev(%x). Any of the above errors indicates that something is
seriously wrong with the controller.

BUGS
There	are	far	too	many	printouts	in	the	driver.	There	should	be	specific	mes-
sages	 for	 specific	problems.

Version 2.1 - 1 - February 1985

DUART(7) Silicon Graphics DUART(7)

NAME
duart – on board serial ports

SYNOPSIS
this	device	 is	 automatically	 included;	no	 config	 info	 is	needed

DESCRIPTION
The on board serial ports for the IRIS system provide four serial ports, one
of which is consumed supporting the IRIS keyboard. The remaining three
ports support fully the rs 232 standard.
Each serial line attached to the back panel behaves as described in termio(7).
Input and output for each line may independently be set to run at any of 16
speeds;	 see	 termio(7) for the encoding.
Unfortunately, due to a historical botch, the UNIX device names for the on
board	ports	do	not	match	the	back	panel	definition.	Unix	uses	a	zero	based	
numbering scheme, with port 0 being the keyboard. The back panel uses a
one based numbering scheme.

FILES
/dev/ttyd[0-3]

SEE ALSO
termio(7)

Version 2.1 - 1 - February 1985

FLOPPY(7) Silicon Graphics FLOPPY(7)

NAME
floppy	–	Qualogy	5217	 st-506	disk/tape/floppy	controller	

SYNOPSIS
controller dsd0 at mb0 csr 0x7F00 priority 1 vector dsdintr
disk	md0	at	dsd0	drive	3	flags	0x01

DESCRIPTION
This is a MULTIBUS st-506 disk and tape controller. The driver software
supports 2 Winchester hard disk drives, one qic-02 tape drive, and one
floppy.	 This	 manual	 page	 documents	 the	 floppy	 support.	 See	 dsd(7) for
information on the Winchester disk support and qic(7) for the streaming tape
support.
The	block	files	access	the	disk	via	the	system’s	normal	buttering	mechanism	
and may be read and written without regard to physical disk records. There
is also a ‘raw’ interface which provides for direct transmission between the
disk and the user’s read or write buffer. A single read or write call results in
exactly	one	I/O	operation	and	therefore	raw	I/O	is	considerably	more	effi-
cient	when	many	words	 are	 transmitted.	The	names	of	 the	 raw	files	 con-
ventionally begin with an extra ‘r.’
In raw I/O counts should be a multiple of 512 bytes (a disk sector). Likewise
seek calls should specify a multiple of 512 bytes.
The	minor	device	bits	for	the	floppy	device	support	several	different	sizes	
and	configurations:	single	sided	versus	double	sided;	single	density	versus	
double	density;	256	byte	sectors	versus	512	byte	sectors.	Each	configuration	
can be combined, thus it is possible to use 256 byte single sided double den-
sity	floppys	 (it	may	not	be	 tested	 though).

FILES
/dev/floppy	 block	device
/dev/rfloppy	 raw	device

SEE ALSO
autoconf(7), dklabel(7), qic(7), dsd(7)

DIAGNOSTICS
mf%d: Write Protected.	The	floppy	in	 the	floppy	drive	 is	write	protected.	
mf%d: Is Diskette Formatted?. The controller is seriously confused by the
floppy	 in	 the	drive.	Try	using	a	 formatted	floppy.
%s on mf%d, slice %d. Usually proceeded by “out of space” when unix
runs out of space on the drive.
mf%d%c: %s err(%s) at %d/%d/%d retry:%d %d/%d/%d req%d atc%d. A
hard error of some sort occurred.
mf%d%c: cmd(%s), err(%s), physical block %d %d/%d/%d req%d atc%d. A
hard error of some sort occurred.

Version 2.1 - 1 - February 1985

IPH(7) Silicon Graphics IPH(7)

NAME
iph – Interphase 2190 smd disk controller

SYNOPSIS
controller iph0 at mb0 csr 0x7010 priority 5 vector ipintr
disk ip0 at iph0 drive 0
disk ip1 at iph0 drive 1

DESCRIPTION
This is a generic MULTIBUS smd disk controller. Files with minor device
numbers	0	 through	7	refer	 to	various	portions	of	drive	0;	minor	devices	8	
through 15 refer to drive 1, etc. The standard device names begin with “ip”
followed by the drive number and then a letter a-h for partitions 0-7 respec-
tively. The character ? stands here for a drive number in the range 0-7.
The	block	files	access	the	disk	via	the	system’s	normal	buffering	mechanism	
and may be read and written without regard to physical disk records. There
is also a ‘raw’ interface which provides for direct transmission between the
disk and the user’s read or write buffer. A single read or write call results in
exactly	one	I/O	operation	and	therefore	raw	I/O	is	considerably	more	effi-
cient	when	many	words	 are	 transmitted.	The	names	of	 the	 raw	files	 con-
ventionally begin with an extra ‘r.’
In raw I/O counts should be a multiple of 512 bytes (a disk sector). Likewise
seek calls should specify a multiple of 512 bytes.
The size of the various partitions supported by the driver in fact are a func-
tion of the drive itself. Present on each drive is a boot label which contains
the partitions sizes and locations.

FILES
/dev/ip[0-3][a-h]	block	files
/dev/rip[0-3][a-h]	 raw	files

SEE ALSO
autoconf(7), dklabel(7)

DIAGNOSTICS
ip%d (***No label***). The named drive has no boot label and thus cannot
be used.
(%s Name: %s). On a successful attach, the drive type is printed out fol-
lowed	by	 its	 “name”	 (a	user	 specifiable	 name).	 The	name	 can	be	defined	
in the standalone utility ipfex.
ipintr: iptab.b_active == 0. A spurious interrupt from the controller oc-
curred.
ipintr hard error(%x): %s block: %d cmd: %s. A hard error occurred while
reading block %d.
ipcmd: timeout wait for status %x. While attempting to get status from the
controller, a timeout occurred. The controller is probably hung.

Version 2.1 - 2 - February 1985

IPH(7) Silicon Graphics IPH(7)

ipcmd: status: %x error: %x. A hard error occurred during a non-
interruptable command.
ipcmd: timeout waiting for cmd %s to complete. A command given to the
drive in a non-interrupt fashion timed out.
%s on ip%d, slice %d.	Usually	printed	by	unix	prefixed	with	the	message	
“out of space”.

Version 2.1 - 1 - February 1985

MEM(7) Silicon Graphics MEM(7)

NAME
mem, kmem – main memory

DESCRIPTION
Mem	is	a	special	file	that	is	an	image	of	the	main	memory	of	the	computer.	
It may be used, for example, to examine (and even to patch) the system.
Byte addresses in mem are interpreted as physical memory addresses. Refer-
ences to non-existent locations cause errors to be returned.
Examining and patching device registers is likely to lead to unexpected
results when read-only or write-only bits are present.
The	 file	 kmem is the same as mem except that kernel virtual memory
rather than physical memory is accessed.
To arrange the map in adb for examining kernel data structures use the com-
mand ?m e00400 efffff.

FILES
/dev/mem
/dev/kmem

Version 2.1 - 1 - February 1985

MEM(7) Silicon Graphics MEM(7)

NAME
mem, kmem – main memory

DESCRIPTION
Mem	is	a	special	file	that	is	an	image	of	the	main	memory	of	the	computer.	
It may be used, for example, to examine (and even to patch) the system.
Byte addresses in mem are interpreted as physical memory addresses. Refer-
ences to non-existent locations cause errors to be returned.
Examining and patching device registers is likely to lead to unexpected
results when read-only or write-only bits are present.
The	 file	 kmem is the same as mem except that kernel virtual memory
rather than physical memory is accessed.
To arrange the map in adb for examining kernel data structures use the com-
mand ?m e00400 efffff.

FILES
/dev/mem
/dev/kmem

Version 2.1 - 1 - February 1985

NULL(7) Silicon Graphics NULL(7)

NAME
null – data sink

DESCRIPTION
Data	written	on	a	null	 special	file	 is	discarded.
Reads	 from	a	null	 special	file	always	 return	0	bytes.

FILES
/dev/null

Version 2.1 - 1 - February 1985

PTY(7) Silicon Graphics PTY(7)

NAME
pty – pseudo terminal driver

SYNOPSIS
pseudo-device pty

DESCRIPTION
The pty driver provides support for a device-pair termed a pseudo terminal.
A pseudo terminal is a pair of character devices, a master device and a slave
device. The slave device provides processes an interface identical to that
described in termio(7). However, whereas all other devices which provide
the interface described in termio(7) have a hardware device of some sort
behind them, the slave device has, instead, another process manipulating it
through the master half of the pseudo terminal. That is, anything written
on the master device is given to the slave device as input and anything writ-
ten on the slave device is presented as input on the master device.

FILES
/dev/pty[0-3] master pseudo terminals
/dev/ttyp[0-3] slave pseudo terminals

Version 2.1 - 1 - February 1985

QIC(7) Silicon Graphics QIC(7)

NAME
qic – Qualogy 5217 st-506 disk/tape controller

SYNOPSIS
controller dsd0 at mb0 csr 0x7F00 priority 1 vector dsdintr
tape	md0	at	dsd0	drive	0	flags	0x02

DESCRIPTION
This is a MULTIBUS ST-506 disk and tape controller. The driver software
supports 2 Winchester hard disk drives, one qic-02 tape drive, and one
floppy.	This	documents	 the	 tape	 support.
There is a ‘raw’ interface which provides for direct transmission between the
tape and the user’s read or write buffer. A single read or write call results in
exactly	one	I/O	operation	and	therefore	raw	I/O	is	considerably	more	effi-
cient	when	many	words	 are	 transmitted.	The	names	of	 the	 raw	files	 con-
ventionally begin with an extra ‘r.’ Also, the mtio(7) interface to the drive is
provided.
In raw I/O counts should be a multiple of 512 bytes (a disk sector). Likewise
seek calls should specify a multiple of 512 bytes.

FILES
/dev/nrmt1 non rewinding drive
/dev/mt1 rewinding drive
/dev/rqic traditional name
/dev/nrtape non rewinding drive (yet another name)

SEE ALSO
autoconf(7),	dklabel(7),	qic(7),	floppy(7)

DIAGNOSTICS
qic%d: No cartridge in drive. Can’t write on nothing.
qic%d: Unit not ready. Something strange is going on.
qic%d: write protected. Tape must be writable if the drive is opened for
read/write or write.
qic%d: couldn’t rewind on open. up the driver.
panic: qicstart: couldn’t start!. Controller is probably wedged.
qic%d: Hard error cmd %s No status available. Something is wrong with
the tape drive such that the controller would hang if it attempted to read
the drive status.
%s on qic%d.	Were	one	 to	actually	mount	a	filesystem	on	 the	 tape	drive,	
this is the message that would be printed if you ran out of space on the
filesystem	proceeded	by	“out	of	 space”.
qic%d: cannot read the Tape Status. Another way of saying that things are
broken.
qic%d: cannot get Tape Status into memory. Yet another way of saying
that things are really gosh darn awfully broken.
qic%d:	 Couldn’t	 write	 file	 mark	 %d. For some reason, the drive was

Version 2.1 - 2 - February 1985

QIC(7) Silicon Graphics QIC(7)

unable	 to	write	a	file	mark.
Failed	%d	files.	While	skipping	forward	%d	files,	 the	 tape	drive	returned	
an	error.	Usually	means	 that	 the	 tape	does	not	 contain	%d	files.	
Failed %d records. While skipping forward %d records, the tape drive
returned an error. Usually means that the tape does not contain %d
records.

BUGS
There	 are	 far	 too	 many	 printouts	 in	 the	 driver.	 More	 specific	 messages	
should be printed.

Version 2.1 - 1 - February 1985

CIB(8) Silicon Graphics CIB(8)

NAME
cib – ib driver control program

SYNOPSIS
cib [function [parameter ...]] ... < /dev/ib00

DESCRIPTION
Cib presents most of the special i/o control functions of the ib(4) driver in a
useable (symbolic) form. The argument list is a series of function names and
parameters, evaluated left-to-right. If the argument list is empty, cib reads
and prints out the GPIB-796 registers.
The functions and their arguments are described below. Some are available
only to the super-user (see ib(4)).
init

executes the IBIOINIT ioctl.
setnode	nodeno	 tag	flags

executes	the	IBIOSETNODE	ioctl.	Only	the	tag	and	flags	fields	are	
changed.

getnode nodeno
executes the IBIOGETNODE ioctl and prints the structure in a read-
able form.

start
executes the IBIOSTART ioctl.

ppc mask
executes the IBIOPPC ioctl.

poll
executes the IBIOPOLL ioctl.

srq value
executes the IBIOSRQ ioctl.

takectl
executes the IBIOTAKECTL ioctl.

passctl nodeno
executes the IBIOPASSCTL ioctl.

cutoff
executes the IBIOCUTOFF ioctl.

EXAMPLE
cib < /dev/ib00 \
 init \
 setnode 0 5 SWAB|PPE|SRQ\
 setnode 1 6 SWAB|PPE|SRQ\
 start

Version 2.1 - 2 - February 1985

CIB(8) Silicon Graphics CIB(8)

FILES
SEE ALSO

dib(8), ib(4), iib(1), tib(8).

Version 2.1 - 1 - February 1985

DIB(8) Silicon Graphics DIB(8)

NAME
dib – dump ib driver data structures

SYNOPSIS
dib [-c] [-t] [-n unix] [-u N] [-v]

DESCRIPTION
Dib is an aid for debugging the ib driver (see ib(4)). It prints out the current
values of various kernel data structures used by the ib driver.
FLAGS
-c

prints out per-minor-device input queues.
-f

prints out buffer (freelist) information.
-n

uses a different kernel namelist (default is /nunix).
-u

prints out structures relating to unit (board) N.
-v

prints out driver globals.
The default is -c -f -n /nunix -u 0 -v . Good luck.

EXAMPLE
dib -u 1

FILES
/dev/kmem
/nunix

SEE ALSO
db(8), ib(4), iib(1), tib(8).

BUGS
Phase errors are possible.

Version 2.1 - 1 - February 1985

TIB(8) Silicon Graphics TIB(8)

NAME
tib – trace ib driver printouts

SYNOPSIS
tib [-l] [-n unix]

DESCRIPTION
Tib is an aid for debugging the ib driver (see ib(4)). It prints out trace infor-
mation from the ib driver, essentially a history of print statements. Only
the	300	most	 recent	print	 statements	are	available.	The	 -l	flag	 shows	each	
printed	item	on	a	separate	line.	The	-n	flag	uses	a	different	kernel	namelist	
(default is /nunix).
Printouts and/or tracing are enabled/disabled by patchable kernel variables.
_ib_debug, _ib_dbg_debug, and _ib_tlc_debug, should be patched to non-0
values if debugging is desired. _ib_print_debug should be patched to non-0
for debugging printouts to the console. _ib_trc_debug should be patched to
non-0 for debugging printouts to the trace buffer used by tib. All should be
patched to 0 for maximum throughput.
Good luck.

EXAMPLE
#! /bin/csh
script to turn off console printouts from ib driver
adb -w /nunix /dev/kmem << ‘EOF’
_ib_print_debug/W 0
$q
‘EOF’

FILES
/dev/kmem
/nunix

SEE ALSO
cib(8), dib(8), ib(4), iib(1).

BUGS
Phase errors are possible. The driver’s throughput is reduced by ~40-50%
when debugging is enabled.

Release GL1-W2.1

Appendix D

Excelan Ethernet Board Address Change Procedure

Release GL1-W2.1

Release GL1-W2.1

D. Excelan Ethernet Board Address Change Procedure

D.1 Introduction

The Excelan ethernet board address must be changed prior to updating the
IRIS 1400 workstation software to Release 2.1. The following instructions will
assist you in completing this change. Before you begin the change, please read
all of the instructions carefully. Use the check-off column to keep from getting
out of step.

If any questions or problems should arise, please contact the Geometry
Hotline:

SGI Geometry Hotline
(800) 252-0222
(800) 345-0222
(415) 962-0606

North America except California (toll-free)
California (toll-free)
Worldwide (collect)

D.2 Requirements

The following is required:

Tools required:
One standard Phillips screwdriver One standard slotted screwdriver

Parts required:
Twelve (12) - Circuit board jumpers

Time required:
Thirty (30) minutes per system

2 IRIS WORKSTATION

Release GL1-W2.1

Excelan Ethernet Board Address Change Procedure

D.3 Instructions

Check
off

Step
Instructions

1 Reboot the IRIS 1400 Workstation. In super-user
mode, type reboot -q.

2 Power off the workstation.
3 Remove the power cord from the rear of the worksta-

tion (Labeled Power).
WARNING: This step is required for safety!

4 Remove the front decor cover from the workstation.
The cover is held in place by snap connectors. Use
either of the following methods to remove the front
cover: 1. Bang the heels of your hands against the
sides of the cover at a 45° angle towards the front. 2.
Tightly grip the top of the cover on both sides, and
pull towards you. Place the cover aside.

5 Remove the card cage cover from the circuit board
card	 cage.	 The	 cover	 has	 a	 circuit	 card	 configuration	
sheet (which you may want to refer to during the
course of the instructions) and is held into place by
eight (8) Phillips-head screws. Loosen all of the
screws, then slide the cover upward until the screw
heads are positioned over the large holes, then pull
the cover towards you. Put the cover aside.

6 Remove the circuit board retainer bracket from the
bottom of the card cage. Loosen the two (2) slotted
screws from the bracket until free. Next, slide the
bracket up approximately seven (7) inches until you
reach the widest opening of card cage. Now, slide the
bracket	 flush	 against	 the	 left	 wall	 of	 the	 card	 cage,	
then pull the right side of the bracket out of the
enclosure. Put the bracket aside.

Release GL1-W2.1

 IRIS WORKSTATION 3 Excelan Ethernet Board Address Change Procedure

Check
off

Step
Instructions

 7 Remove the cable from the top connector (P3) of the
PM2 circuit board located in slot one (1) of the card
cage, (far left)
Note: The other end of the cable is attached to top
connector (P3) of the GF1 circuit board located in slot
twenty (20) of the card cage. It need not be removed.

 8 Remove the RGB cable (small grey cable) from the
middle connector (P2) of the DC3 circuit board located
in slot eighteen (18) of the card cage.

 9 The Excelan board is static sensitive. Please take
appropriate measures to reduce the possibility of
electrostatic discharge (ESD) damage:

1. Discharge any static build up by using a grounded wrist
strap while handling the board.

2. Handle the board by the edges only.

3. Place the board on a conductive surface while
changing the address.

Remove the Ethernet board located in slot two (2) of
the card cage. As the board is being removed, remove
the cable from the top connector (PI) on board.
Note: Be sure all cables are clear of slot two (2) before
removing the board.

10 Place the Ethernet board on a cleared table with the
components facing up and the card edge connector
facing you. Refer to Figure 2 for address setting
location. Insert the circuit board jumpers as referred to
in Figure 1.

11 Re-install the Ethernet board half way into slot two
(2). Re-connect the cable to the Ethernet board and
push the board the rest of the way into the slot. Be
sure	 the	 board	 is	 firmly	 seated	 into	 its	 connector.	 If	
this	 is	 difficult,	 wedge	 the	 circuit	 board	 retainer	
bracket (from step 6) between a wall and the back of
the unit and push hard with your thumbs on the clips
at the top and bottom of the circuit board.

12 Re-install the RGB cable to the middle connector (P2)
of the PC3 circuit board located in slot eighteen (18).

13 Re-install the cable to the top connector (P3) of the
PM2 circuit board located in slot one (1).

Release GL1-W2.1

4 IRIS WORKSTATION Excelan Ethernet Board Address Change Procedure

Release GL1-W2.1

Check
off

Step
Instructions

14 Re-install the circuit board retainer bracket.
15 Re-install the card cage cover to the card cage.
16 Re-install the decor cover of the workstation.
17 Re-install the power cord at the rear of the workstation.

(Labeled Power)
18 Power on the workstation.
19 Boot the UNIX system back up.

Now that Release 2.1 software has been installed,
the	 first	 reboot	 with	 Release	 2.1	 will	 indicate	 that	 the	
Ethernet board is installed, (nx mbio 0x7ffc ipl2)

D.4 Ethernet Address Jumpering

1 2 1 2
• • • • JU1 ◼ • •
• • • • JU3 ◼ ◼ JU2
• • • • JU5 ◼ ◼ JU6
• • ◼ JU8 JU7 ◼ ◼ JU8
• • • • JU9 ◼ ◼ JU10
• • • • JU11 ◼ ◼ JU12
• • • • JU13 ◼ ◼ JU14
• • • • • • • •
15 16 15 16

OLD
SETTING

(mbio 0x0010)

NEW
SETTING

(mbio 0x7ffc)

↓ ↓ ↓
Edge Connector

NOTE: The shaded areas of the drawings above are where the jumpers are
inserted. See Figure 2 for the location of the address pluggin location.

Figure 1.

